Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128836930> ?p ?o ?g. }
- W3128836930 endingPage "541" @default.
- W3128836930 startingPage "541" @default.
- W3128836930 abstract "Monitoring the spatial and temporal variability of yield crop traits using remote sensing techniques is the basis for the correct adoption of precision farming. Vegetation index images are mainly associated with yield and yield-related physiological traits, although quick and sound strategies for the classification of the areas with plants with homogeneous agronomic crop traits are still to be explored. A classification technique based on remote sensing spectral information analysis was performed to discriminate between wheat cultivars. The study analyzes the ability of the cluster method applied to the data of three vegetation indices (VIs) collected by high-resolution UAV at three different crop stages (seedling, tillering, and flowering), to detect the yield and yield component dynamics of seven durum wheat cultivars. Ground truth data were grouped according to the identified clusters for VI cluster validation. The yield crop variability recorded in the field at harvest showed values ranging from 2.55 to 7.90 t. The ability of the VI clusters to identify areas with similar agronomic characteristics for the parameters collected and analyzed a posteriori revealed an already important ability to detect areas with different yield potential at seedling (5.88 t ha−1 for the first cluster, 4.22 t ha−1 for the fourth). At tillering, an enormous difficulty in differentiating the less productive areas in particular was recorded (5.66 t ha−1 for cluster 1 and 4.74, 4.31, and 4.66 t ha−1 for clusters 2, 3, and 4, respectively). An excellent ability to group areas with the same yield production at flowering was recorded for the cluster 1 (6.44 t ha−1), followed by cluster 2 (5.6 t ha−1), cluster 3 (4.31 t ha−1), and cluster 4 (3.85 t ha−1). Agronomic crop traits, cultivars, and environmental variability were analyzed. The multiple uses of VIs have improved the sensitivity of k-means clustering for a new image segmentation strategy. The cluster method can be considered an effective and simple tool for the dynamic monitoring and assessment of agronomic traits in open field wheat crops." @default.
- W3128836930 created "2021-02-15" @default.
- W3128836930 creator A5051391162 @default.
- W3128836930 creator A5070813037 @default.
- W3128836930 date "2021-02-03" @default.
- W3128836930 modified "2023-10-04" @default.
- W3128836930 title "Vegetation Indices Data Clustering for Dynamic Monitoring and Classification of Wheat Yield Crop Traits" @default.
- W3128836930 cites W1964050442 @default.
- W3128836930 cites W1964217023 @default.
- W3128836930 cites W1967395374 @default.
- W3128836930 cites W1972793421 @default.
- W3128836930 cites W1975173652 @default.
- W3128836930 cites W1980760548 @default.
- W3128836930 cites W1991968327 @default.
- W3128836930 cites W1992245241 @default.
- W3128836930 cites W2012686349 @default.
- W3128836930 cites W2016381774 @default.
- W3128836930 cites W2041282815 @default.
- W3128836930 cites W2047882922 @default.
- W3128836930 cites W2051098045 @default.
- W3128836930 cites W2051779798 @default.
- W3128836930 cites W2057966317 @default.
- W3128836930 cites W2063427034 @default.
- W3128836930 cites W2074464158 @default.
- W3128836930 cites W2079475820 @default.
- W3128836930 cites W2082970635 @default.
- W3128836930 cites W2106228468 @default.
- W3128836930 cites W2118476033 @default.
- W3128836930 cites W2122348296 @default.
- W3128836930 cites W2144559754 @default.
- W3128836930 cites W2161703324 @default.
- W3128836930 cites W2170797800 @default.
- W3128836930 cites W2173830158 @default.
- W3128836930 cites W2200022020 @default.
- W3128836930 cites W2207083369 @default.
- W3128836930 cites W2263637168 @default.
- W3128836930 cites W2272083780 @default.
- W3128836930 cites W2513851811 @default.
- W3128836930 cites W2565531507 @default.
- W3128836930 cites W2600241223 @default.
- W3128836930 cites W2617056706 @default.
- W3128836930 cites W2622954938 @default.
- W3128836930 cites W2625648638 @default.
- W3128836930 cites W2704880239 @default.
- W3128836930 cites W2736116482 @default.
- W3128836930 cites W2741850261 @default.
- W3128836930 cites W2767812726 @default.
- W3128836930 cites W2792835403 @default.
- W3128836930 cites W2894822940 @default.
- W3128836930 cites W2923833971 @default.
- W3128836930 cites W2943031462 @default.
- W3128836930 cites W2947572107 @default.
- W3128836930 cites W2966408598 @default.
- W3128836930 cites W2969789557 @default.
- W3128836930 cites W2981054638 @default.
- W3128836930 cites W2999717264 @default.
- W3128836930 cites W3004337988 @default.
- W3128836930 cites W3005430388 @default.
- W3128836930 cites W3009445648 @default.
- W3128836930 cites W3020879896 @default.
- W3128836930 cites W3027093989 @default.
- W3128836930 cites W3091730256 @default.
- W3128836930 cites W3109695596 @default.
- W3128836930 cites W4236800718 @default.
- W3128836930 cites W4255058865 @default.
- W3128836930 doi "https://doi.org/10.3390/rs13040541" @default.
- W3128836930 hasPublicationYear "2021" @default.
- W3128836930 type Work @default.
- W3128836930 sameAs 3128836930 @default.
- W3128836930 citedByCount "15" @default.
- W3128836930 countsByYear W31288369302021 @default.
- W3128836930 countsByYear W31288369302022 @default.
- W3128836930 countsByYear W31288369302023 @default.
- W3128836930 crossrefType "journal-article" @default.
- W3128836930 hasAuthorship W3128836930A5051391162 @default.
- W3128836930 hasAuthorship W3128836930A5070813037 @default.
- W3128836930 hasBestOaLocation W31288369301 @default.
- W3128836930 hasConcept C118518473 @default.
- W3128836930 hasConcept C126343540 @default.
- W3128836930 hasConcept C134121241 @default.
- W3128836930 hasConcept C137580998 @default.
- W3128836930 hasConcept C142724271 @default.
- W3128836930 hasConcept C1549246 @default.
- W3128836930 hasConcept C164866538 @default.
- W3128836930 hasConcept C18903297 @default.
- W3128836930 hasConcept C191897082 @default.
- W3128836930 hasConcept C192562407 @default.
- W3128836930 hasConcept C197321923 @default.
- W3128836930 hasConcept C199360897 @default.
- W3128836930 hasConcept C205649164 @default.
- W3128836930 hasConcept C25989453 @default.
- W3128836930 hasConcept C2776133958 @default.
- W3128836930 hasConcept C41008148 @default.
- W3128836930 hasConcept C62649853 @default.
- W3128836930 hasConcept C6557445 @default.
- W3128836930 hasConcept C71924100 @default.
- W3128836930 hasConcept C86803240 @default.
- W3128836930 hasConceptScore W3128836930C118518473 @default.