Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128840207> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3128840207 endingPage "1285" @default.
- W3128840207 startingPage "1285" @default.
- W3128840207 abstract "Learning systems have been focused on creating models capable of obtaining the best results in error metrics. Recently, the focus has shifted to improvement in the interpretation and explanation of the results. The need for interpretation is greater when these models are used to support decision making. In some areas, this becomes an indispensable requirement, such as in medicine. The goal of this study was to define a simple process to construct a system that could be easily interpreted based on two principles: (1) reduction of attributes without degrading the performance of the prediction systems and (2) selecting a technique to interpret the final prediction system. To describe this process, we selected a problem, predicting cardiovascular disease, by analyzing the well-known Statlog (Heart) data set from the University of California’s Automated Learning Repository. We analyzed the cost of making predictions easier to interpret by reducing the number of features that explain the classification of health status versus the cost in accuracy. We performed an analysis on a large set of classification techniques and performance metrics, demonstrating that it is possible to construct explainable and reliable models that provide high quality predictive performance." @default.
- W3128840207 created "2021-02-15" @default.
- W3128840207 creator A5008583301 @default.
- W3128840207 creator A5049852670 @default.
- W3128840207 creator A5078240188 @default.
- W3128840207 creator A5079499955 @default.
- W3128840207 date "2021-01-30" @default.
- W3128840207 modified "2023-09-27" @default.
- W3128840207 title "Minimum Relevant Features to Obtain Explainable Systems for Predicting Cardiovascular Disease Using the Statlog Data Set" @default.
- W3128840207 cites W1130077638 @default.
- W3128840207 cites W1519043595 @default.
- W3128840207 cites W1850308234 @default.
- W3128840207 cites W1985995090 @default.
- W3128840207 cites W2033371754 @default.
- W3128840207 cites W2114939847 @default.
- W3128840207 cites W2123998733 @default.
- W3128840207 cites W2142711599 @default.
- W3128840207 cites W2184248488 @default.
- W3128840207 cites W2531733772 @default.
- W3128840207 cites W2549384645 @default.
- W3128840207 cites W2566909686 @default.
- W3128840207 cites W2581465409 @default.
- W3128840207 cites W2604975863 @default.
- W3128840207 cites W2745673637 @default.
- W3128840207 cites W2759591207 @default.
- W3128840207 cites W2784168210 @default.
- W3128840207 cites W2788345626 @default.
- W3128840207 cites W2810556455 @default.
- W3128840207 cites W2883817443 @default.
- W3128840207 cites W2885669402 @default.
- W3128840207 cites W2891822621 @default.
- W3128840207 cites W2895081681 @default.
- W3128840207 cites W2963409068 @default.
- W3128840207 cites W2964303497 @default.
- W3128840207 cites W3039534199 @default.
- W3128840207 cites W3043083589 @default.
- W3128840207 cites W3044995941 @default.
- W3128840207 cites W3099136959 @default.
- W3128840207 cites W4231944115 @default.
- W3128840207 cites W4297957988 @default.
- W3128840207 doi "https://doi.org/10.3390/app11031285" @default.
- W3128840207 hasPublicationYear "2021" @default.
- W3128840207 type Work @default.
- W3128840207 sameAs 3128840207 @default.
- W3128840207 citedByCount "9" @default.
- W3128840207 countsByYear W31288402072021 @default.
- W3128840207 countsByYear W31288402072022 @default.
- W3128840207 countsByYear W31288402072023 @default.
- W3128840207 crossrefType "journal-article" @default.
- W3128840207 hasAuthorship W3128840207A5008583301 @default.
- W3128840207 hasAuthorship W3128840207A5049852670 @default.
- W3128840207 hasAuthorship W3128840207A5078240188 @default.
- W3128840207 hasAuthorship W3128840207A5079499955 @default.
- W3128840207 hasBestOaLocation W31288402071 @default.
- W3128840207 hasConcept C111919701 @default.
- W3128840207 hasConcept C119857082 @default.
- W3128840207 hasConcept C124101348 @default.
- W3128840207 hasConcept C154945302 @default.
- W3128840207 hasConcept C177264268 @default.
- W3128840207 hasConcept C199360897 @default.
- W3128840207 hasConcept C2780801425 @default.
- W3128840207 hasConcept C41008148 @default.
- W3128840207 hasConcept C98045186 @default.
- W3128840207 hasConceptScore W3128840207C111919701 @default.
- W3128840207 hasConceptScore W3128840207C119857082 @default.
- W3128840207 hasConceptScore W3128840207C124101348 @default.
- W3128840207 hasConceptScore W3128840207C154945302 @default.
- W3128840207 hasConceptScore W3128840207C177264268 @default.
- W3128840207 hasConceptScore W3128840207C199360897 @default.
- W3128840207 hasConceptScore W3128840207C2780801425 @default.
- W3128840207 hasConceptScore W3128840207C41008148 @default.
- W3128840207 hasConceptScore W3128840207C98045186 @default.
- W3128840207 hasFunder F4320336576 @default.
- W3128840207 hasIssue "3" @default.
- W3128840207 hasLocation W31288402071 @default.
- W3128840207 hasLocation W31288402072 @default.
- W3128840207 hasOpenAccess W3128840207 @default.
- W3128840207 hasPrimaryLocation W31288402071 @default.
- W3128840207 hasRelatedWork W1597929225 @default.
- W3128840207 hasRelatedWork W2371857510 @default.
- W3128840207 hasRelatedWork W2961085424 @default.
- W3128840207 hasRelatedWork W3046775127 @default.
- W3128840207 hasRelatedWork W3170094116 @default.
- W3128840207 hasRelatedWork W4285260836 @default.
- W3128840207 hasRelatedWork W4286629047 @default.
- W3128840207 hasRelatedWork W4306321456 @default.
- W3128840207 hasRelatedWork W4306674287 @default.
- W3128840207 hasRelatedWork W4224009465 @default.
- W3128840207 hasVolume "11" @default.
- W3128840207 isParatext "false" @default.
- W3128840207 isRetracted "false" @default.
- W3128840207 magId "3128840207" @default.
- W3128840207 workType "article" @default.