Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128889004> ?p ?o ?g. }
- W3128889004 abstract "Obtaining large annotated datasets is critical for training successful machine learning models and it is often a bottleneck in practice. Weak supervision offers a promising alternative for producing labeled datasets without ground truth annotations by generating probabilistic labels using multiple noisy heuristics. This process can scale to large datasets and has demonstrated state of the art performance in diverse domains such as healthcare and e-commerce. One practical issue with learning from user-generated heuristics is that their creation requires creativity, foresight, and domain expertise from those who hand-craft them, a process which can be tedious and subjective. We develop the first framework for interactive weak supervision in which a method proposes heuristics and learns from user feedback given on each proposed heuristic. Our experiments demonstrate that only a small number of feedback iterations are needed to train models that achieve highly competitive test set performance without access to ground truth training labels. We conduct user studies, which show that users are able to effectively provide feedback on heuristics and that test set results track the performance of simulated oracles." @default.
- W3128889004 created "2021-02-15" @default.
- W3128889004 creator A5009547049 @default.
- W3128889004 creator A5037154494 @default.
- W3128889004 creator A5057716290 @default.
- W3128889004 creator A5073310637 @default.
- W3128889004 date "2021-05-03" @default.
- W3128889004 modified "2023-09-27" @default.
- W3128889004 title "Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling" @default.
- W3128889004 cites W108763474 @default.
- W3128889004 cites W1530718350 @default.
- W3128889004 cites W1595324333 @default.
- W3128889004 cites W1604644367 @default.
- W3128889004 cites W1861492603 @default.
- W3128889004 cites W2067214947 @default.
- W3128889004 cites W2096642565 @default.
- W3128889004 cites W2113459411 @default.
- W3128889004 cites W2132679783 @default.
- W3128889004 cites W2140890285 @default.
- W3128889004 cites W2152798551 @default.
- W3128889004 cites W2165968176 @default.
- W3128889004 cites W2194775991 @default.
- W3128889004 cites W2413868409 @default.
- W3128889004 cites W2610935556 @default.
- W3128889004 cites W2740571411 @default.
- W3128889004 cites W2760375580 @default.
- W3128889004 cites W2770490030 @default.
- W3128889004 cites W2798820905 @default.
- W3128889004 cites W2809897079 @default.
- W3128889004 cites W2889757348 @default.
- W3128889004 cites W2895604144 @default.
- W3128889004 cites W2899943572 @default.
- W3128889004 cites W2901138758 @default.
- W3128889004 cites W2903440991 @default.
- W3128889004 cites W2911424454 @default.
- W3128889004 cites W2913176359 @default.
- W3128889004 cites W2951122613 @default.
- W3128889004 cites W2957824372 @default.
- W3128889004 cites W2963028402 @default.
- W3128889004 cites W2964121744 @default.
- W3128889004 cites W2970565845 @default.
- W3128889004 cites W2994846479 @default.
- W3128889004 cites W3016911444 @default.
- W3128889004 cites W3022046290 @default.
- W3128889004 cites W3023626240 @default.
- W3128889004 cites W3034712684 @default.
- W3128889004 cites W3037764886 @default.
- W3128889004 cites W3098649723 @default.
- W3128889004 cites W3173251917 @default.
- W3128889004 cites W9014458 @default.
- W3128889004 cites W2592362528 @default.
- W3128889004 cites W2962778704 @default.
- W3128889004 cites W2962915384 @default.
- W3128889004 cites W2971350322 @default.
- W3128889004 hasPublicationYear "2021" @default.
- W3128889004 type Work @default.
- W3128889004 sameAs 3128889004 @default.
- W3128889004 citedByCount "6" @default.
- W3128889004 countsByYear W31288890042021 @default.
- W3128889004 crossrefType "proceedings-article" @default.
- W3128889004 hasAuthorship W3128889004A5009547049 @default.
- W3128889004 hasAuthorship W3128889004A5037154494 @default.
- W3128889004 hasAuthorship W3128889004A5057716290 @default.
- W3128889004 hasAuthorship W3128889004A5073310637 @default.
- W3128889004 hasConcept C107457646 @default.
- W3128889004 hasConcept C111919701 @default.
- W3128889004 hasConcept C119857082 @default.
- W3128889004 hasConcept C127705205 @default.
- W3128889004 hasConcept C134306372 @default.
- W3128889004 hasConcept C144133560 @default.
- W3128889004 hasConcept C146849305 @default.
- W3128889004 hasConcept C149635348 @default.
- W3128889004 hasConcept C154945302 @default.
- W3128889004 hasConcept C162853370 @default.
- W3128889004 hasConcept C173801870 @default.
- W3128889004 hasConcept C177264268 @default.
- W3128889004 hasConcept C199360897 @default.
- W3128889004 hasConcept C2780513914 @default.
- W3128889004 hasConcept C33923547 @default.
- W3128889004 hasConcept C36503486 @default.
- W3128889004 hasConcept C41008148 @default.
- W3128889004 hasConcept C49937458 @default.
- W3128889004 hasConcept C86251818 @default.
- W3128889004 hasConcept C98045186 @default.
- W3128889004 hasConceptScore W3128889004C107457646 @default.
- W3128889004 hasConceptScore W3128889004C111919701 @default.
- W3128889004 hasConceptScore W3128889004C119857082 @default.
- W3128889004 hasConceptScore W3128889004C127705205 @default.
- W3128889004 hasConceptScore W3128889004C134306372 @default.
- W3128889004 hasConceptScore W3128889004C144133560 @default.
- W3128889004 hasConceptScore W3128889004C146849305 @default.
- W3128889004 hasConceptScore W3128889004C149635348 @default.
- W3128889004 hasConceptScore W3128889004C154945302 @default.
- W3128889004 hasConceptScore W3128889004C162853370 @default.
- W3128889004 hasConceptScore W3128889004C173801870 @default.
- W3128889004 hasConceptScore W3128889004C177264268 @default.
- W3128889004 hasConceptScore W3128889004C199360897 @default.
- W3128889004 hasConceptScore W3128889004C2780513914 @default.
- W3128889004 hasConceptScore W3128889004C33923547 @default.
- W3128889004 hasConceptScore W3128889004C36503486 @default.