Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128907225> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3128907225 endingPage "187" @default.
- W3128907225 startingPage "177" @default.
- W3128907225 abstract "Abstract This chapter explores the deep neural network (DNN) approach in speech emotion recognition (SER). DNN is solving difficult problems in artificial intelligence domain and its subdomains like computer vision. SER is an unsolved problem, and researchers are proposing different models to solve the pending issues. In this chapter, the existing deep learning (DL) approaches used in SER are being discussed in brief. Then, a novel model is built using DL architecture to produce results that can show directions toward building more robust solutions for SER. The dataset used here is EmoDB, a popular dataset for SER research, and data are augmented using random displacement technique. The network model used for this work is a feedforward neural network with four hidden layers. The model has produced approximately 10% cross-validation accuracy improvement over models trained on nonaugmented data." @default.
- W3128907225 created "2021-02-15" @default.
- W3128907225 creator A5017042977 @default.
- W3128907225 creator A5052832051 @default.
- W3128907225 creator A5066130528 @default.
- W3128907225 date "2021-01-01" @default.
- W3128907225 modified "2023-10-14" @default.
- W3128907225 title "Speech emotion recognition using deep learning" @default.
- W3128907225 cites W2074788634 @default.
- W3128907225 cites W2087750470 @default.
- W3128907225 cites W2109172886 @default.
- W3128907225 cites W2148143831 @default.
- W3128907225 cites W2295001676 @default.
- W3128907225 cites W2408520939 @default.
- W3128907225 cites W2602034649 @default.
- W3128907225 cites W2885005742 @default.
- W3128907225 cites W2888778306 @default.
- W3128907225 cites W2951442257 @default.
- W3128907225 cites W3098357269 @default.
- W3128907225 doi "https://doi.org/10.1016/b978-0-12-822133-4.00009-8" @default.
- W3128907225 hasPublicationYear "2021" @default.
- W3128907225 type Work @default.
- W3128907225 sameAs 3128907225 @default.
- W3128907225 citedByCount "0" @default.
- W3128907225 crossrefType "book-chapter" @default.
- W3128907225 hasAuthorship W3128907225A5017042977 @default.
- W3128907225 hasAuthorship W3128907225A5052832051 @default.
- W3128907225 hasAuthorship W3128907225A5066130528 @default.
- W3128907225 hasConcept C15744967 @default.
- W3128907225 hasConcept C2777438025 @default.
- W3128907225 hasConcept C28490314 @default.
- W3128907225 hasConcept C41008148 @default.
- W3128907225 hasConceptScore W3128907225C15744967 @default.
- W3128907225 hasConceptScore W3128907225C2777438025 @default.
- W3128907225 hasConceptScore W3128907225C28490314 @default.
- W3128907225 hasConceptScore W3128907225C41008148 @default.
- W3128907225 hasLocation W31289072251 @default.
- W3128907225 hasOpenAccess W3128907225 @default.
- W3128907225 hasPrimaryLocation W31289072251 @default.
- W3128907225 hasRelatedWork W2312116756 @default.
- W3128907225 hasRelatedWork W2368779261 @default.
- W3128907225 hasRelatedWork W2748952813 @default.
- W3128907225 hasRelatedWork W2778699561 @default.
- W3128907225 hasRelatedWork W2794438528 @default.
- W3128907225 hasRelatedWork W2893763841 @default.
- W3128907225 hasRelatedWork W2899084033 @default.
- W3128907225 hasRelatedWork W2995996972 @default.
- W3128907225 hasRelatedWork W3128571556 @default.
- W3128907225 hasRelatedWork W4304891817 @default.
- W3128907225 isParatext "false" @default.
- W3128907225 isRetracted "false" @default.
- W3128907225 magId "3128907225" @default.
- W3128907225 workType "book-chapter" @default.