Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129031799> ?p ?o ?g. }
- W3129031799 endingPage "346" @default.
- W3129031799 startingPage "330" @default.
- W3129031799 abstract "Supervised learning is often used to count objects in images, but for counting small, densely located objects, the required image annotations are burdensome to collect. Counting plant organs for image-based plant phenotyping falls within this category. Object counting in plant images is further challenged by having plant image datasets with significant domain shift due to different experimental conditions, e.g. applying an annotated dataset of indoor plant images for use on outdoor images, or on a different plant species. In this paper, we propose a domain-adversarial learning approach for domain adaptation of density map estimation for the purposes of object counting. The approach does not assume perfectly aligned distributions between the source and target datasets, which makes it more broadly applicable within general object counting and plant organ counting tasks. Evaluation on two diverse object counting tasks (wheat spikelets, leaves) demonstrates consistent performance on the target datasets across different classes of domain shift: from indoor-to-outdoor images and from species-to-species adaptation." @default.
- W3129031799 created "2021-02-15" @default.
- W3129031799 creator A5003790536 @default.
- W3129031799 creator A5025391833 @default.
- W3129031799 creator A5091364384 @default.
- W3129031799 date "2020-01-01" @default.
- W3129031799 modified "2023-10-01" @default.
- W3129031799 title "Unsupervised Domain Adaptation for Plant Organ Counting" @default.
- W3129031799 cites W1901129140 @default.
- W3129031799 cites W1916279783 @default.
- W3129031799 cites W1978232622 @default.
- W3129031799 cites W2120815373 @default.
- W3129031799 cites W2214409633 @default.
- W3129031799 cites W2264784471 @default.
- W3129031799 cites W2288989350 @default.
- W3129031799 cites W2347064614 @default.
- W3129031799 cites W2584009249 @default.
- W3129031799 cites W2593768305 @default.
- W3129031799 cites W2729018917 @default.
- W3129031799 cites W2733608569 @default.
- W3129031799 cites W2734511492 @default.
- W3129031799 cites W2735522704 @default.
- W3129031799 cites W2768701195 @default.
- W3129031799 cites W2771079624 @default.
- W3129031799 cites W2784289537 @default.
- W3129031799 cites W2785423457 @default.
- W3129031799 cites W2786808285 @default.
- W3129031799 cites W2801525523 @default.
- W3129031799 cites W2884960332 @default.
- W3129031799 cites W2886319627 @default.
- W3129031799 cites W2896585023 @default.
- W3129031799 cites W2899128648 @default.
- W3129031799 cites W2946211694 @default.
- W3129031799 cites W2949551779 @default.
- W3129031799 cites W2950717180 @default.
- W3129031799 cites W2953027458 @default.
- W3129031799 cites W2953907326 @default.
- W3129031799 cites W2958876490 @default.
- W3129031799 cites W2962854645 @default.
- W3129031799 cites W2963754008 @default.
- W3129031799 cites W2963826106 @default.
- W3129031799 cites W2967173272 @default.
- W3129031799 cites W2976947428 @default.
- W3129031799 cites W2996517490 @default.
- W3129031799 cites W2999363320 @default.
- W3129031799 cites W3010202682 @default.
- W3129031799 cites W3064678530 @default.
- W3129031799 doi "https://doi.org/10.1007/978-3-030-65414-6_23" @default.
- W3129031799 hasPublicationYear "2020" @default.
- W3129031799 type Work @default.
- W3129031799 sameAs 3129031799 @default.
- W3129031799 citedByCount "14" @default.
- W3129031799 countsByYear W31290317992020 @default.
- W3129031799 countsByYear W31290317992021 @default.
- W3129031799 countsByYear W31290317992022 @default.
- W3129031799 countsByYear W31290317992023 @default.
- W3129031799 crossrefType "book-chapter" @default.
- W3129031799 hasAuthorship W3129031799A5003790536 @default.
- W3129031799 hasAuthorship W3129031799A5025391833 @default.
- W3129031799 hasAuthorship W3129031799A5091364384 @default.
- W3129031799 hasBestOaLocation W31290317992 @default.
- W3129031799 hasConcept C134306372 @default.
- W3129031799 hasConcept C139807058 @default.
- W3129031799 hasConcept C154945302 @default.
- W3129031799 hasConcept C15744967 @default.
- W3129031799 hasConcept C169760540 @default.
- W3129031799 hasConcept C2776434776 @default.
- W3129031799 hasConcept C33923547 @default.
- W3129031799 hasConcept C36503486 @default.
- W3129031799 hasConcept C41008148 @default.
- W3129031799 hasConcept C95623464 @default.
- W3129031799 hasConceptScore W3129031799C134306372 @default.
- W3129031799 hasConceptScore W3129031799C139807058 @default.
- W3129031799 hasConceptScore W3129031799C154945302 @default.
- W3129031799 hasConceptScore W3129031799C15744967 @default.
- W3129031799 hasConceptScore W3129031799C169760540 @default.
- W3129031799 hasConceptScore W3129031799C2776434776 @default.
- W3129031799 hasConceptScore W3129031799C33923547 @default.
- W3129031799 hasConceptScore W3129031799C36503486 @default.
- W3129031799 hasConceptScore W3129031799C41008148 @default.
- W3129031799 hasConceptScore W3129031799C95623464 @default.
- W3129031799 hasLocation W31290317991 @default.
- W3129031799 hasLocation W31290317992 @default.
- W3129031799 hasOpenAccess W3129031799 @default.
- W3129031799 hasPrimaryLocation W31290317991 @default.
- W3129031799 hasRelatedWork W1864954421 @default.
- W3129031799 hasRelatedWork W2152148513 @default.
- W3129031799 hasRelatedWork W2280198878 @default.
- W3129031799 hasRelatedWork W2783380393 @default.
- W3129031799 hasRelatedWork W2951876757 @default.
- W3129031799 hasRelatedWork W3012432583 @default.
- W3129031799 hasRelatedWork W3096565154 @default.
- W3129031799 hasRelatedWork W4281397339 @default.
- W3129031799 hasRelatedWork W4283450023 @default.
- W3129031799 hasRelatedWork W4312910505 @default.
- W3129031799 isParatext "false" @default.
- W3129031799 isRetracted "false" @default.
- W3129031799 magId "3129031799" @default.