Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129043469> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3129043469 abstract "Over the past decades, various neural networks have been proposed with the rapid development of the machine learning field. In particular, graph neural networks using feature-vectors assigned to nodes and edges have been attracting attention in various fields. The usefulness of graph neural networks also affected the field of quantum computing, which led to the birth of quantum graph neural networks composed of parameterized quantum circuits. The quantum graph neural networks have many possibilities as applications from the simulation perspective of quantum dynamics. Among the application models of various quantum graph neural networks, the quantum graph recurrent neural network (QGRNN) is proven to be effective in training the Ising model Hamiltonian. Thus, this paper introduces the concepts of the Ising model, variational quantum eigensolver (VQE) for preparing quantum data, and QGRNN from a software engineer's point of view." @default.
- W3129043469 created "2021-02-15" @default.
- W3129043469 creator A5049202871 @default.
- W3129043469 creator A5066096702 @default.
- W3129043469 creator A5087649907 @default.
- W3129043469 date "2021-01-13" @default.
- W3129043469 modified "2023-10-16" @default.
- W3129043469 title "A Tutorial on Quantum Graph Recurrent Neural Network (QGRNN)" @default.
- W3129043469 cites W1622946479 @default.
- W3129043469 cites W1983624953 @default.
- W3129043469 cites W1990910582 @default.
- W3129043469 cites W2002147436 @default.
- W3129043469 cites W2096870234 @default.
- W3129043469 cites W2102447663 @default.
- W3129043469 cites W2116341502 @default.
- W3129043469 cites W2159739530 @default.
- W3129043469 cites W2161685427 @default.
- W3129043469 cites W2198250518 @default.
- W3129043469 cites W2290847742 @default.
- W3129043469 cites W2559394418 @default.
- W3129043469 cites W2735281769 @default.
- W3129043469 cites W2754868542 @default.
- W3129043469 cites W2781738013 @default.
- W3129043469 cites W2792946961 @default.
- W3129043469 cites W2896712926 @default.
- W3129043469 cites W2907827190 @default.
- W3129043469 cites W2923481626 @default.
- W3129043469 cites W2954292307 @default.
- W3129043469 cites W2981880765 @default.
- W3129043469 cites W3010468967 @default.
- W3129043469 cites W3044674088 @default.
- W3129043469 cites W3099200606 @default.
- W3129043469 cites W3100594946 @default.
- W3129043469 cites W3106193000 @default.
- W3129043469 doi "https://doi.org/10.1109/icoin50884.2021.9333917" @default.
- W3129043469 hasPublicationYear "2021" @default.
- W3129043469 type Work @default.
- W3129043469 sameAs 3129043469 @default.
- W3129043469 citedByCount "8" @default.
- W3129043469 countsByYear W31290434692021 @default.
- W3129043469 countsByYear W31290434692023 @default.
- W3129043469 crossrefType "proceedings-article" @default.
- W3129043469 hasAuthorship W3129043469A5049202871 @default.
- W3129043469 hasAuthorship W3129043469A5066096702 @default.
- W3129043469 hasAuthorship W3129043469A5087649907 @default.
- W3129043469 hasConcept C121332964 @default.
- W3129043469 hasConcept C121864883 @default.
- W3129043469 hasConcept C132525143 @default.
- W3129043469 hasConcept C154945302 @default.
- W3129043469 hasConcept C2779094486 @default.
- W3129043469 hasConcept C41008148 @default.
- W3129043469 hasConcept C50644808 @default.
- W3129043469 hasConcept C51329190 @default.
- W3129043469 hasConcept C58053490 @default.
- W3129043469 hasConcept C62520636 @default.
- W3129043469 hasConcept C80444323 @default.
- W3129043469 hasConcept C84114770 @default.
- W3129043469 hasConceptScore W3129043469C121332964 @default.
- W3129043469 hasConceptScore W3129043469C121864883 @default.
- W3129043469 hasConceptScore W3129043469C132525143 @default.
- W3129043469 hasConceptScore W3129043469C154945302 @default.
- W3129043469 hasConceptScore W3129043469C2779094486 @default.
- W3129043469 hasConceptScore W3129043469C41008148 @default.
- W3129043469 hasConceptScore W3129043469C50644808 @default.
- W3129043469 hasConceptScore W3129043469C51329190 @default.
- W3129043469 hasConceptScore W3129043469C58053490 @default.
- W3129043469 hasConceptScore W3129043469C62520636 @default.
- W3129043469 hasConceptScore W3129043469C80444323 @default.
- W3129043469 hasConceptScore W3129043469C84114770 @default.
- W3129043469 hasFunder F4320320671 @default.
- W3129043469 hasLocation W31290434691 @default.
- W3129043469 hasOpenAccess W3129043469 @default.
- W3129043469 hasPrimaryLocation W31290434691 @default.
- W3129043469 hasRelatedWork W2944417983 @default.
- W3129043469 hasRelatedWork W2981886227 @default.
- W3129043469 hasRelatedWork W3010468967 @default.
- W3129043469 hasRelatedWork W3132418032 @default.
- W3129043469 hasRelatedWork W4309465149 @default.
- W3129043469 hasRelatedWork W4312109322 @default.
- W3129043469 hasRelatedWork W4312852566 @default.
- W3129043469 hasRelatedWork W4323032116 @default.
- W3129043469 hasRelatedWork W4362682022 @default.
- W3129043469 hasRelatedWork W4385662062 @default.
- W3129043469 isParatext "false" @default.
- W3129043469 isRetracted "false" @default.
- W3129043469 magId "3129043469" @default.
- W3129043469 workType "article" @default.