Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129060003> ?p ?o ?g. }
- W3129060003 endingPage "102134" @default.
- W3129060003 startingPage "102134" @default.
- W3129060003 abstract "• A hybrid model to predict the pose-dependent FRF of industrial robots was developed • Experimental Modal Analysis was conducted to calibrate a data-driven model • Operational Modal Analysis was performed from milling data to update the model • The hybrid model combining EMA and OMA was shown to improve calibration efficiency Models that predict the Frequency Response Function (FRF) of six degree-of-freedom (6-dof) industrial robots used for machining operations such as milling are usually built using Experimental Modal Analysis (EMA) of vibration data obtained from modal impact hammer tests performed at a finite number of points in the robot's workspace corresponding to specific arm configurations. While modal impact hammer tests are not constrained by the operating conditions of the robot, such as specific arm configurations allowed by part fixturing, they are limited by the number of workspace points that can be practically sampled and the associated robot downtime. Alternatively, the process of determining robot FRFs from on-line machining process data (e.g., forces and vibration) through Operational Modal Analysis (OMA) enables a denser sampling of the robot's workspace without requiring robot downtime. However, OMA may require several long tool paths and one or more complex part setups to enable sampling of a sufficiently large number of locations/arm configurations. This paper presents an efficient hybrid statistical modelling methodology that combines the two approaches, thus enabling possible optimization of sampling density and robot downtime, to efficiently determine the robot FRFs as a function arm configuration. The approach consists of first calibrating a Gaussian Process Regression (GPR) model with FRF data derived from EMA conducted at a small number of discrete locations in the robot's workspace. Then, FRFs calculated from OMA of milling forces and tool tip vibration data derived from robotic milling tests are used to update the initial GPR model using Bayesian inference and efficient hyperparameter updating. The proposed hybrid robot FRF modelling method is experimentally validated and shown to yield accurate predictions of the robot FRF while being computationally efficient." @default.
- W3129060003 created "2021-02-15" @default.
- W3129060003 creator A5065436865 @default.
- W3129060003 creator A5075529785 @default.
- W3129060003 date "2021-08-01" @default.
- W3129060003 modified "2023-10-12" @default.
- W3129060003 title "Hybrid statistical modelling of the frequency response function of industrial robots" @default.
- W3129060003 cites W1536497620 @default.
- W3129060003 cites W1867701952 @default.
- W3129060003 cites W1989642033 @default.
- W3129060003 cites W2016325227 @default.
- W3129060003 cites W2022607858 @default.
- W3129060003 cites W2035700792 @default.
- W3129060003 cites W2038477548 @default.
- W3129060003 cites W2070700047 @default.
- W3129060003 cites W2072578400 @default.
- W3129060003 cites W2087793351 @default.
- W3129060003 cites W2116336719 @default.
- W3129060003 cites W2125226428 @default.
- W3129060003 cites W2143013621 @default.
- W3129060003 cites W2166072476 @default.
- W3129060003 cites W2402392025 @default.
- W3129060003 cites W2725082743 @default.
- W3129060003 cites W2759439148 @default.
- W3129060003 cites W2765442053 @default.
- W3129060003 cites W2884557444 @default.
- W3129060003 cites W2894155344 @default.
- W3129060003 cites W2898125438 @default.
- W3129060003 cites W2907251493 @default.
- W3129060003 cites W2907980800 @default.
- W3129060003 cites W2962821864 @default.
- W3129060003 cites W2974077201 @default.
- W3129060003 cites W2980373102 @default.
- W3129060003 cites W3004416042 @default.
- W3129060003 cites W3007700417 @default.
- W3129060003 cites W3010028633 @default.
- W3129060003 cites W3031007234 @default.
- W3129060003 cites W3037513246 @default.
- W3129060003 cites W3045733926 @default.
- W3129060003 cites W3089583514 @default.
- W3129060003 doi "https://doi.org/10.1016/j.rcim.2021.102134" @default.
- W3129060003 hasPublicationYear "2021" @default.
- W3129060003 type Work @default.
- W3129060003 sameAs 3129060003 @default.
- W3129060003 citedByCount "22" @default.
- W3129060003 countsByYear W31290600032021 @default.
- W3129060003 countsByYear W31290600032022 @default.
- W3129060003 countsByYear W31290600032023 @default.
- W3129060003 crossrefType "journal-article" @default.
- W3129060003 hasAuthorship W3129060003A5065436865 @default.
- W3129060003 hasAuthorship W3129060003A5075529785 @default.
- W3129060003 hasConcept C104286136 @default.
- W3129060003 hasConcept C111919701 @default.
- W3129060003 hasConcept C119599485 @default.
- W3129060003 hasConcept C121332964 @default.
- W3129060003 hasConcept C127413603 @default.
- W3129060003 hasConcept C135628077 @default.
- W3129060003 hasConcept C154945302 @default.
- W3129060003 hasConcept C180591934 @default.
- W3129060003 hasConcept C185592680 @default.
- W3129060003 hasConcept C188027245 @default.
- W3129060003 hasConcept C200601418 @default.
- W3129060003 hasConcept C2776126113 @default.
- W3129060003 hasConcept C2776960193 @default.
- W3129060003 hasConcept C39920418 @default.
- W3129060003 hasConcept C41008148 @default.
- W3129060003 hasConcept C44154836 @default.
- W3129060003 hasConcept C523214423 @default.
- W3129060003 hasConcept C58581272 @default.
- W3129060003 hasConcept C66938386 @default.
- W3129060003 hasConcept C71139939 @default.
- W3129060003 hasConcept C74650414 @default.
- W3129060003 hasConcept C78519656 @default.
- W3129060003 hasConcept C8590192 @default.
- W3129060003 hasConcept C90509273 @default.
- W3129060003 hasConcept C98045186 @default.
- W3129060003 hasConceptScore W3129060003C104286136 @default.
- W3129060003 hasConceptScore W3129060003C111919701 @default.
- W3129060003 hasConceptScore W3129060003C119599485 @default.
- W3129060003 hasConceptScore W3129060003C121332964 @default.
- W3129060003 hasConceptScore W3129060003C127413603 @default.
- W3129060003 hasConceptScore W3129060003C135628077 @default.
- W3129060003 hasConceptScore W3129060003C154945302 @default.
- W3129060003 hasConceptScore W3129060003C180591934 @default.
- W3129060003 hasConceptScore W3129060003C185592680 @default.
- W3129060003 hasConceptScore W3129060003C188027245 @default.
- W3129060003 hasConceptScore W3129060003C200601418 @default.
- W3129060003 hasConceptScore W3129060003C2776126113 @default.
- W3129060003 hasConceptScore W3129060003C2776960193 @default.
- W3129060003 hasConceptScore W3129060003C39920418 @default.
- W3129060003 hasConceptScore W3129060003C41008148 @default.
- W3129060003 hasConceptScore W3129060003C44154836 @default.
- W3129060003 hasConceptScore W3129060003C523214423 @default.
- W3129060003 hasConceptScore W3129060003C58581272 @default.
- W3129060003 hasConceptScore W3129060003C66938386 @default.
- W3129060003 hasConceptScore W3129060003C71139939 @default.
- W3129060003 hasConceptScore W3129060003C74650414 @default.
- W3129060003 hasConceptScore W3129060003C78519656 @default.