Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129096175> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3129096175 abstract "The past three decades has seen major developments in high-dimensional regression models leading to their successful use in applications from multiple domains including climate science, finance, recommendation systems, computational biology, signal processing to name a few. The underlying assumption in high-dimensional regression models is that the phenomenon under study can be explained by a simple model with few variables. In high-dimensional parametric regression models with parameters existing in high-dimensional space, the simplicity assumption is encoded by a sparsity constraint to be satisfied by the parameter vector. Statistical analysis of high-dimensional regression models delves into the study of the properties of the models, including how faithfully the models recover the assumed true sparse parameter and model sensitivity to different data assumptions. While major progress has been made over the past several years, non-asymptotic statistical analysis of high-dimensional regression models still makes standard data assumptions of (sub)-Gaussianity and independence which do not hold in some practical applications. For example, datasets in climate and finance are known to have variables with heavier tails than Gaussian or bandit algorithms have data that is sequentially chosen thus violating the independence assumption. The topic of this thesis is the non-asymptotic statistical analysis and study of high-dimensional regression estimators under non-standard data assumptions, including analysis of traditional estimators like regularized least squares as also design of new algorithms to improve estimation performance. Our technical results highlight geometric properties of high-dimensional models and hence all results are expressed in terms of geometric quantities associated with the sparsity structure assumed for the parameter. Much of the analysis borrows tools and techniques from random matrix analysis, probability tools like generic chaining and, in general, probability results for behavior of random variables, vectors in high-dimensional space. We analyze four problems: 1. Regularized least squares with sub-exponential data: Data in multiple domains like finance, climate science are known to be sub-exponential, which have probability distributions with tails heavier than Gaussians but dominated by a suitably scaled centered exponential distribution. We study non-asymptotic estimation performance of the regularized least squares estimator with i.i.d. sub-exponential data showing that the estimation performance is slightly worse compared to the i.i.d. sub-Gaussian setting. 2. High-dimensional quantile regression: We study the quantile regression problem in high dimensions which models the conditional quantile of a response given covariates. While least squares regression is ideal to model the conditional mean of a response variable which is symmetric (sub)-Gaussian, there are multiple applications where it is imperative/of interest to model conditional quantiles of the response given covariates to…" @default.
- W3129096175 created "2021-02-15" @default.
- W3129096175 creator A5023256318 @default.
- W3129096175 date "2020-09-01" @default.
- W3129096175 modified "2023-09-23" @default.
- W3129096175 title "Beyond Sub-Gaussian and Independent Data in High Dimensional Regression" @default.
- W3129096175 hasPublicationYear "2020" @default.
- W3129096175 type Work @default.
- W3129096175 sameAs 3129096175 @default.
- W3129096175 citedByCount "0" @default.
- W3129096175 crossrefType "dissertation" @default.
- W3129096175 hasAuthorship W3129096175A5023256318 @default.
- W3129096175 hasConcept C105795698 @default.
- W3129096175 hasConcept C11413529 @default.
- W3129096175 hasConcept C117251300 @default.
- W3129096175 hasConcept C119857082 @default.
- W3129096175 hasConcept C152877465 @default.
- W3129096175 hasConcept C185429906 @default.
- W3129096175 hasConcept C33923547 @default.
- W3129096175 hasConcept C35651441 @default.
- W3129096175 hasConcept C41008148 @default.
- W3129096175 hasConcept C83546350 @default.
- W3129096175 hasConceptScore W3129096175C105795698 @default.
- W3129096175 hasConceptScore W3129096175C11413529 @default.
- W3129096175 hasConceptScore W3129096175C117251300 @default.
- W3129096175 hasConceptScore W3129096175C119857082 @default.
- W3129096175 hasConceptScore W3129096175C152877465 @default.
- W3129096175 hasConceptScore W3129096175C185429906 @default.
- W3129096175 hasConceptScore W3129096175C33923547 @default.
- W3129096175 hasConceptScore W3129096175C35651441 @default.
- W3129096175 hasConceptScore W3129096175C41008148 @default.
- W3129096175 hasConceptScore W3129096175C83546350 @default.
- W3129096175 hasLocation W31290961751 @default.
- W3129096175 hasOpenAccess W3129096175 @default.
- W3129096175 hasPrimaryLocation W31290961751 @default.
- W3129096175 hasRelatedWork W2191119664 @default.
- W3129096175 hasRelatedWork W2328212019 @default.
- W3129096175 hasRelatedWork W2759654819 @default.
- W3129096175 hasRelatedWork W2786668885 @default.
- W3129096175 hasRelatedWork W2867982072 @default.
- W3129096175 hasRelatedWork W2900656902 @default.
- W3129096175 hasRelatedWork W2944981336 @default.
- W3129096175 hasRelatedWork W2962685313 @default.
- W3129096175 hasRelatedWork W2963611525 @default.
- W3129096175 hasRelatedWork W2964071008 @default.
- W3129096175 hasRelatedWork W2969004177 @default.
- W3129096175 hasRelatedWork W2987189410 @default.
- W3129096175 hasRelatedWork W2996540354 @default.
- W3129096175 hasRelatedWork W3047457833 @default.
- W3129096175 hasRelatedWork W3088785605 @default.
- W3129096175 hasRelatedWork W3119877827 @default.
- W3129096175 hasRelatedWork W3149206943 @default.
- W3129096175 hasRelatedWork W3162799677 @default.
- W3129096175 hasRelatedWork W3174908011 @default.
- W3129096175 hasRelatedWork W3211320975 @default.
- W3129096175 isParatext "false" @default.
- W3129096175 isRetracted "false" @default.
- W3129096175 magId "3129096175" @default.
- W3129096175 workType "dissertation" @default.