Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129125470> ?p ?o ?g. }
- W3129125470 endingPage "241" @default.
- W3129125470 startingPage "241" @default.
- W3129125470 abstract "Globally, breast cancer is one of the most significant causes of death among women. Early detection accompanied by prompt treatment can reduce the risk of death due to breast cancer. Currently, machine learning in cloud computing plays a pivotal role in disease diagnosis, but predominantly among the people living in remote areas where medical facilities are scarce. Diagnosis systems based on machine learning act as secondary readers and assist radiologists in the proper diagnosis of diseases, whereas cloud-based systems can support telehealth services and remote diagnostics. Techniques based on artificial neural networks (ANN) have attracted many researchers to explore their capability for disease diagnosis. Extreme learning machine (ELM) is one of the variants of ANN that has a huge potential for solving various classification problems. The framework proposed in this paper amalgamates three research domains: Firstly, ELM is applied for the diagnosis of breast cancer. Secondly, to eliminate insignificant features, the gain ratio feature selection method is employed. Lastly, a cloud computing-based system for remote diagnosis of breast cancer using ELM is proposed. The performance of the cloud-based ELM is compared with some state-of-the-art technologies for disease diagnosis. The results achieved on the Wisconsin Diagnostic Breast Cancer (WBCD) dataset indicate that the cloud-based ELM technique outperforms other results. The best performance results of ELM were found for both the standalone and cloud environments, which were compared. The important findings of the experimental results indicate that the accuracy achieved is 0.9868, the recall is 0.9130, the precision is 0.9054, and the F1-score is 0.8129." @default.
- W3129125470 created "2021-02-15" @default.
- W3129125470 creator A5012372409 @default.
- W3129125470 creator A5018586987 @default.
- W3129125470 creator A5021930159 @default.
- W3129125470 creator A5030718446 @default.
- W3129125470 creator A5042653526 @default.
- W3129125470 creator A5053961796 @default.
- W3129125470 creator A5057555412 @default.
- W3129125470 creator A5091151166 @default.
- W3129125470 date "2021-02-04" @default.
- W3129125470 modified "2023-10-06" @default.
- W3129125470 title "Cloud Computing-Based Framework for Breast Cancer Diagnosis Using Extreme Learning Machine" @default.
- W3129125470 cites W1837982953 @default.
- W3129125470 cites W1965895201 @default.
- W3129125470 cites W1968969471 @default.
- W3129125470 cites W2004288989 @default.
- W3129125470 cites W2008998164 @default.
- W3129125470 cites W2038525357 @default.
- W3129125470 cites W2069914810 @default.
- W3129125470 cites W2077819016 @default.
- W3129125470 cites W2129727551 @default.
- W3129125470 cites W2134295053 @default.
- W3129125470 cites W2137356002 @default.
- W3129125470 cites W2153635508 @default.
- W3129125470 cites W2183234860 @default.
- W3129125470 cites W2213782059 @default.
- W3129125470 cites W2290432223 @default.
- W3129125470 cites W2314686227 @default.
- W3129125470 cites W2469668433 @default.
- W3129125470 cites W2521461427 @default.
- W3129125470 cites W2581082771 @default.
- W3129125470 cites W2609260717 @default.
- W3129125470 cites W2610135452 @default.
- W3129125470 cites W2617295893 @default.
- W3129125470 cites W2711636288 @default.
- W3129125470 cites W2739807715 @default.
- W3129125470 cites W2788508510 @default.
- W3129125470 cites W2800094831 @default.
- W3129125470 cites W2899432087 @default.
- W3129125470 cites W2900144270 @default.
- W3129125470 cites W2904741265 @default.
- W3129125470 cites W2904910159 @default.
- W3129125470 cites W2908052439 @default.
- W3129125470 cites W2912441434 @default.
- W3129125470 cites W2914033837 @default.
- W3129125470 cites W2915602172 @default.
- W3129125470 cites W2918598741 @default.
- W3129125470 cites W2928842276 @default.
- W3129125470 cites W2938054231 @default.
- W3129125470 cites W2939302023 @default.
- W3129125470 cites W2939354476 @default.
- W3129125470 cites W2948328522 @default.
- W3129125470 cites W2952319621 @default.
- W3129125470 cites W2964255387 @default.
- W3129125470 cites W2969775100 @default.
- W3129125470 cites W2980030301 @default.
- W3129125470 cites W2980225234 @default.
- W3129125470 cites W2982822400 @default.
- W3129125470 cites W2987776955 @default.
- W3129125470 cites W2989272346 @default.
- W3129125470 cites W2996716854 @default.
- W3129125470 cites W2998175747 @default.
- W3129125470 cites W3005870519 @default.
- W3129125470 cites W3013170635 @default.
- W3129125470 cites W3013538309 @default.
- W3129125470 cites W3019898597 @default.
- W3129125470 cites W3021989148 @default.
- W3129125470 cites W3031948080 @default.
- W3129125470 cites W3032218674 @default.
- W3129125470 cites W3041266228 @default.
- W3129125470 cites W3047434002 @default.
- W3129125470 cites W3049543877 @default.
- W3129125470 cites W3114958142 @default.
- W3129125470 cites W3118694803 @default.
- W3129125470 cites W3118779687 @default.
- W3129125470 cites W3120076093 @default.
- W3129125470 cites W3120091839 @default.
- W3129125470 cites W3157017075 @default.
- W3129125470 doi "https://doi.org/10.3390/diagnostics11020241" @default.
- W3129125470 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7913821" @default.
- W3129125470 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33557132" @default.
- W3129125470 hasPublicationYear "2021" @default.
- W3129125470 type Work @default.
- W3129125470 sameAs 3129125470 @default.
- W3129125470 citedByCount "98" @default.
- W3129125470 countsByYear W31291254702021 @default.
- W3129125470 countsByYear W31291254702022 @default.
- W3129125470 countsByYear W31291254702023 @default.
- W3129125470 crossrefType "journal-article" @default.
- W3129125470 hasAuthorship W3129125470A5012372409 @default.
- W3129125470 hasAuthorship W3129125470A5018586987 @default.
- W3129125470 hasAuthorship W3129125470A5021930159 @default.
- W3129125470 hasAuthorship W3129125470A5030718446 @default.
- W3129125470 hasAuthorship W3129125470A5042653526 @default.
- W3129125470 hasAuthorship W3129125470A5053961796 @default.
- W3129125470 hasAuthorship W3129125470A5057555412 @default.
- W3129125470 hasAuthorship W3129125470A5091151166 @default.