Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129128097> ?p ?o ?g. }
- W3129128097 endingPage "187" @default.
- W3129128097 startingPage "176" @default.
- W3129128097 abstract "Techniques for harvest and delivery of cell sheets have been improving for decades. However, cell sheets with complicated patterns closely related to natural tissue architecture were hardly achieved. Here, we developed an efficient method to culture and harvest cell sheets with complex shape (noted as microtissues) using temperature-responsive hydrogel consisting of expandable polyethylene oxide polymer at low temperature. Firstly, a temperature-responsive hydrogel surface with honeycomb patterns (50 and 100 µm in width) were developed through microcontact printing of polydopamine (PD). The human dermal fibroblasts (HDFBs) and human umbilical vein endothelial cells (HUVECs) spontaneously formed honeycomb-shaped microtissues on the patterned hydrogel surface. The microtissues on the hydrogel were able to be harvested and directly delivered to the desired target through thermal expansion of the hydrogel at 4 °C with an efficiency close to 80% within 10 min which is faster than conventional method based on poly(N-isopropylacrylamide). The microtissues maintained their original honeycomb network and intact structures. Honeycomb-patterned cell sheets also were fabricated through serial seeding of various cell lines, including HDFBs, HUVECs, and human adipose-derived stem cells, in which cells were attached along the honeycomb pattern. The underlying honeycomb patterns in the cell sheets were successfully maintained for 3 days, even after delivery. In addition, patterned cell sheets were successfully delivered in vivo while maintaining an intact structure for 7 days. Together, our findings demonstrate that micropatterned temperature-responsive hydrogel is an efficient method of one-step culturing and delivery of complex microtissues and should prove useful in various tissue engineering applications. Scaffold-free cell delivery techniques, including cell sheet engineering, have been developed for decades. However, there is limited research regarding culture and delivery of microtissues with complex architecture mimicking natural tissue. Herein, we developed a micro-patterned hydrogel platform for the culture and delivery of honeycomb-shaped microtissues. Honeycomb patterns were chemically engineered on the temperature-responsive hydrogel through microcontact printing of polydopamine to selectively allow for human dermal fibroblast or human umbilical vein endothelial cell adhesion. They spontaneously formed honeycomb-shaped microtissues within 24 hr upon cell seeding and directly delivered to various target area including in vivo via thermal expansion of the hydrogel at 4 °C, suggesting that the micro-patterned hydrogel can be an efficient tool for culture and delivery of complex microtissue." @default.
- W3129128097 created "2021-02-15" @default.
- W3129128097 creator A5001550074 @default.
- W3129128097 creator A5021289768 @default.
- W3129128097 creator A5043491071 @default.
- W3129128097 creator A5062317501 @default.
- W3129128097 date "2021-09-01" @default.
- W3129128097 modified "2023-10-13" @default.
- W3129128097 title "One-step harvest and delivery of micropatterned cell sheets mimicking the multi-cellular microenvironment of vascularized tissue" @default.
- W3129128097 cites W1554555407 @default.
- W3129128097 cites W1969042698 @default.
- W3129128097 cites W1976330554 @default.
- W3129128097 cites W1978854686 @default.
- W3129128097 cites W1990612468 @default.
- W3129128097 cites W1996401393 @default.
- W3129128097 cites W2004098988 @default.
- W3129128097 cites W2009852602 @default.
- W3129128097 cites W2012082350 @default.
- W3129128097 cites W2016235191 @default.
- W3129128097 cites W2016389354 @default.
- W3129128097 cites W2022885108 @default.
- W3129128097 cites W2032100236 @default.
- W3129128097 cites W2041052342 @default.
- W3129128097 cites W2047635571 @default.
- W3129128097 cites W2054975088 @default.
- W3129128097 cites W2065485445 @default.
- W3129128097 cites W2068506802 @default.
- W3129128097 cites W2081678513 @default.
- W3129128097 cites W2085224687 @default.
- W3129128097 cites W2100454719 @default.
- W3129128097 cites W2101601223 @default.
- W3129128097 cites W2101784587 @default.
- W3129128097 cites W2105674785 @default.
- W3129128097 cites W2121542828 @default.
- W3129128097 cites W2127869811 @default.
- W3129128097 cites W2134728545 @default.
- W3129128097 cites W2136536759 @default.
- W3129128097 cites W2166356819 @default.
- W3129128097 cites W2169827245 @default.
- W3129128097 cites W2171293586 @default.
- W3129128097 cites W2176629782 @default.
- W3129128097 cites W2272241996 @default.
- W3129128097 cites W2295454854 @default.
- W3129128097 cites W2312517444 @default.
- W3129128097 cites W2317002432 @default.
- W3129128097 cites W2345157039 @default.
- W3129128097 cites W2404577175 @default.
- W3129128097 cites W2469534256 @default.
- W3129128097 cites W2551130236 @default.
- W3129128097 cites W2612338459 @default.
- W3129128097 cites W2618477036 @default.
- W3129128097 cites W2734569890 @default.
- W3129128097 cites W2740629921 @default.
- W3129128097 cites W2753720954 @default.
- W3129128097 cites W2762260414 @default.
- W3129128097 cites W2772601063 @default.
- W3129128097 cites W2789310625 @default.
- W3129128097 cites W2885219921 @default.
- W3129128097 cites W2889177054 @default.
- W3129128097 cites W2896835882 @default.
- W3129128097 cites W2905567844 @default.
- W3129128097 cites W2914800753 @default.
- W3129128097 cites W2940815402 @default.
- W3129128097 cites W2946327999 @default.
- W3129128097 cites W2956364666 @default.
- W3129128097 cites W2977974049 @default.
- W3129128097 cites W2987301553 @default.
- W3129128097 cites W3015790407 @default.
- W3129128097 cites W3022643082 @default.
- W3129128097 cites W3038624695 @default.
- W3129128097 doi "https://doi.org/10.1016/j.actbio.2021.02.009" @default.
- W3129128097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33571713" @default.
- W3129128097 hasPublicationYear "2021" @default.
- W3129128097 type Work @default.
- W3129128097 sameAs 3129128097 @default.
- W3129128097 citedByCount "10" @default.
- W3129128097 countsByYear W31291280972021 @default.
- W3129128097 countsByYear W31291280972022 @default.
- W3129128097 countsByYear W31291280972023 @default.
- W3129128097 crossrefType "journal-article" @default.
- W3129128097 hasAuthorship W3129128097A5001550074 @default.
- W3129128097 hasAuthorship W3129128097A5021289768 @default.
- W3129128097 hasAuthorship W3129128097A5043491071 @default.
- W3129128097 hasAuthorship W3129128097A5062317501 @default.
- W3129128097 hasConcept C108586683 @default.
- W3129128097 hasConcept C136229726 @default.
- W3129128097 hasConcept C145665481 @default.
- W3129128097 hasConcept C159985019 @default.
- W3129128097 hasConcept C171250308 @default.
- W3129128097 hasConcept C171736797 @default.
- W3129128097 hasConcept C185592680 @default.
- W3129128097 hasConcept C188027245 @default.
- W3129128097 hasConcept C192562407 @default.
- W3129128097 hasConcept C202751555 @default.
- W3129128097 hasConcept C2777411675 @default.
- W3129128097 hasConcept C49892992 @default.
- W3129128097 hasConcept C55493867 @default.
- W3129128097 hasConcept C58943365 @default.