Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129139193> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3129139193 endingPage "104" @default.
- W3129139193 startingPage "91" @default.
- W3129139193 abstract "This work aimed to use machine learning to diagnose four heart valve disease conditions and normal heart sounds. This paper proposed the automated classification of normal, aortic stenosis, mitral valve prolapse, mitral stenosis, and mitral regurgitation using phonocardiogram (PCG) signals. This work proposed a novel graph-based feature generator developed using a graph-based technique called Petersen graph pattern (PGP). In addition, a new decomposition model was proposed using variable-sized overlapping blocks, namely tent pooling (TEP) decomposition. By combining TEP and PGP, a novel multilevel feature generation network was developed. Iterative neighborhood component analysis (INCA) was used to select the features. The selected features were fed to decision tree (DT), linear discriminant (LD), bagged tree (BT), and support vector machine (SVM) classifiers for automated classification into five classes. The proposed method's results yielded 100.0% classification accuracy using the k nearest neighbor (kNN) classifier with a ten-fold cross-validation strategy in classifying the five classes. DT, LD, BT, SVM classifiers yielded an accuracy of 95.10%, 98.30%, 98.60%, and 99.90%, respectively. Our attained high classification accuracy suggests that the proposed PGP and TEP based model can be used for heart sound classification using PCG signals." @default.
- W3129139193 created "2021-02-15" @default.
- W3129139193 creator A5021720735 @default.
- W3129139193 creator A5027649343 @default.
- W3129139193 creator A5040772000 @default.
- W3129139193 creator A5067752341 @default.
- W3129139193 date "2021-07-01" @default.
- W3129139193 modified "2023-10-16" @default.
- W3129139193 title "Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals" @default.
- W3129139193 cites W1982159013 @default.
- W3129139193 cites W2028558462 @default.
- W3129139193 cites W2143755314 @default.
- W3129139193 cites W2145893638 @default.
- W3129139193 cites W2158097202 @default.
- W3129139193 cites W2166282318 @default.
- W3129139193 cites W2557139718 @default.
- W3129139193 cites W2561035116 @default.
- W3129139193 cites W2592046076 @default.
- W3129139193 cites W2803229189 @default.
- W3129139193 cites W2811161392 @default.
- W3129139193 cites W2883178266 @default.
- W3129139193 cites W2901976219 @default.
- W3129139193 cites W2907615080 @default.
- W3129139193 cites W2913088108 @default.
- W3129139193 cites W2915954229 @default.
- W3129139193 cites W2917865943 @default.
- W3129139193 cites W2942861350 @default.
- W3129139193 cites W2966010975 @default.
- W3129139193 cites W2967246721 @default.
- W3129139193 cites W2980580024 @default.
- W3129139193 cites W2982872774 @default.
- W3129139193 cites W2984572262 @default.
- W3129139193 cites W2990019725 @default.
- W3129139193 cites W2991201356 @default.
- W3129139193 cites W2993118585 @default.
- W3129139193 cites W3003788485 @default.
- W3129139193 cites W3004025693 @default.
- W3129139193 cites W3006038865 @default.
- W3129139193 cites W3011928146 @default.
- W3129139193 cites W3035159033 @default.
- W3129139193 cites W3037146579 @default.
- W3129139193 cites W3039053306 @default.
- W3129139193 cites W3044259016 @default.
- W3129139193 cites W3082756870 @default.
- W3129139193 doi "https://doi.org/10.1016/j.ins.2021.01.088" @default.
- W3129139193 hasPublicationYear "2021" @default.
- W3129139193 type Work @default.
- W3129139193 sameAs 3129139193 @default.
- W3129139193 citedByCount "29" @default.
- W3129139193 countsByYear W31291391932021 @default.
- W3129139193 countsByYear W31291391932022 @default.
- W3129139193 countsByYear W31291391932023 @default.
- W3129139193 crossrefType "journal-article" @default.
- W3129139193 hasAuthorship W3129139193A5021720735 @default.
- W3129139193 hasAuthorship W3129139193A5027649343 @default.
- W3129139193 hasAuthorship W3129139193A5040772000 @default.
- W3129139193 hasAuthorship W3129139193A5067752341 @default.
- W3129139193 hasConcept C12267149 @default.
- W3129139193 hasConcept C132525143 @default.
- W3129139193 hasConcept C153180895 @default.
- W3129139193 hasConcept C154945302 @default.
- W3129139193 hasConcept C159693508 @default.
- W3129139193 hasConcept C41008148 @default.
- W3129139193 hasConcept C69738355 @default.
- W3129139193 hasConcept C80444323 @default.
- W3129139193 hasConceptScore W3129139193C12267149 @default.
- W3129139193 hasConceptScore W3129139193C132525143 @default.
- W3129139193 hasConceptScore W3129139193C153180895 @default.
- W3129139193 hasConceptScore W3129139193C154945302 @default.
- W3129139193 hasConceptScore W3129139193C159693508 @default.
- W3129139193 hasConceptScore W3129139193C41008148 @default.
- W3129139193 hasConceptScore W3129139193C69738355 @default.
- W3129139193 hasConceptScore W3129139193C80444323 @default.
- W3129139193 hasLocation W31291391931 @default.
- W3129139193 hasOpenAccess W3129139193 @default.
- W3129139193 hasPrimaryLocation W31291391931 @default.
- W3129139193 hasRelatedWork W1809065030 @default.
- W3129139193 hasRelatedWork W2041399278 @default.
- W3129139193 hasRelatedWork W2099369243 @default.
- W3129139193 hasRelatedWork W2120008580 @default.
- W3129139193 hasRelatedWork W2146076056 @default.
- W3129139193 hasRelatedWork W2339674921 @default.
- W3129139193 hasRelatedWork W2353567328 @default.
- W3129139193 hasRelatedWork W2380927352 @default.
- W3129139193 hasRelatedWork W4223656335 @default.
- W3129139193 hasRelatedWork W2345184372 @default.
- W3129139193 hasVolume "565" @default.
- W3129139193 isParatext "false" @default.
- W3129139193 isRetracted "false" @default.
- W3129139193 magId "3129139193" @default.
- W3129139193 workType "article" @default.