Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129156950> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3129156950 endingPage "943" @default.
- W3129156950 startingPage "934" @default.
- W3129156950 abstract "This article discusses the problem of handwriting recognition in Kazakh and Russian languages. This area is poorly studied since in the literature there are almost no works in this direction. We have tried to describe various approaches and achievements of recent years in the development of handwritten recognition models in relation to Cyrillic graphics. The first model uses deep convolutional neural networks (CNNs) for feature extraction and a fully connected multilayer perceptron neural network (MLP) for word classification. The second model, called SimpleHTR, uses CNN and recurrent neural network (RNN) layers to extract information from images. We also proposed the Bluechet and Puchserver models to compare the results. Due to the lack of available open datasets in Russian and Kazakh languages, we carried out work to collect data that included handwritten names of countries and cities from 42 different Cyrillic words, written more than 500 times in different handwriting. We also used a handwritten database of Kazakh and Russian languages (HKR). This is a new database of Cyrillic words (not only countries and cities) for the Russian and Kazakh languages, created by the authors of this work." @default.
- W3129156950 created "2021-02-15" @default.
- W3129156950 creator A5029585327 @default.
- W3129156950 creator A5049189403 @default.
- W3129156950 creator A5049311172 @default.
- W3129156950 creator A5058963362 @default.
- W3129156950 creator A5064852810 @default.
- W3129156950 creator A5065903552 @default.
- W3129156950 date "2020-01-01" @default.
- W3129156950 modified "2023-10-17" @default.
- W3129156950 title "Classification of Handwritten Names of Cities and Handwritten Text Recognition using Various Deep Learning Models" @default.
- W3129156950 cites W2064675550 @default.
- W3129156950 cites W2142069714 @default.
- W3129156950 cites W2149319679 @default.
- W3129156950 cites W2168868236 @default.
- W3129156950 cites W2777421064 @default.
- W3129156950 cites W2785820430 @default.
- W3129156950 cites W2786974559 @default.
- W3129156950 cites W2789876780 @default.
- W3129156950 cites W3012992168 @default.
- W3129156950 cites W4236121604 @default.
- W3129156950 cites W4243189766 @default.
- W3129156950 cites W88272963 @default.
- W3129156950 doi "https://doi.org/10.25046/aj0505114" @default.
- W3129156950 hasPublicationYear "2020" @default.
- W3129156950 type Work @default.
- W3129156950 sameAs 3129156950 @default.
- W3129156950 citedByCount "9" @default.
- W3129156950 countsByYear W31291569502020 @default.
- W3129156950 countsByYear W31291569502021 @default.
- W3129156950 countsByYear W31291569502022 @default.
- W3129156950 countsByYear W31291569502023 @default.
- W3129156950 crossrefType "journal-article" @default.
- W3129156950 hasAuthorship W3129156950A5029585327 @default.
- W3129156950 hasAuthorship W3129156950A5049189403 @default.
- W3129156950 hasAuthorship W3129156950A5049311172 @default.
- W3129156950 hasAuthorship W3129156950A5058963362 @default.
- W3129156950 hasAuthorship W3129156950A5064852810 @default.
- W3129156950 hasAuthorship W3129156950A5065903552 @default.
- W3129156950 hasBestOaLocation W31291569501 @default.
- W3129156950 hasConcept C108583219 @default.
- W3129156950 hasConcept C112640561 @default.
- W3129156950 hasConcept C138885662 @default.
- W3129156950 hasConcept C147168706 @default.
- W3129156950 hasConcept C153180895 @default.
- W3129156950 hasConcept C154945302 @default.
- W3129156950 hasConcept C204321447 @default.
- W3129156950 hasConcept C2776401178 @default.
- W3129156950 hasConcept C2779386606 @default.
- W3129156950 hasConcept C2781297163 @default.
- W3129156950 hasConcept C41008148 @default.
- W3129156950 hasConcept C41895202 @default.
- W3129156950 hasConcept C50644808 @default.
- W3129156950 hasConcept C52622490 @default.
- W3129156950 hasConcept C81363708 @default.
- W3129156950 hasConcept C90805587 @default.
- W3129156950 hasConceptScore W3129156950C108583219 @default.
- W3129156950 hasConceptScore W3129156950C112640561 @default.
- W3129156950 hasConceptScore W3129156950C138885662 @default.
- W3129156950 hasConceptScore W3129156950C147168706 @default.
- W3129156950 hasConceptScore W3129156950C153180895 @default.
- W3129156950 hasConceptScore W3129156950C154945302 @default.
- W3129156950 hasConceptScore W3129156950C204321447 @default.
- W3129156950 hasConceptScore W3129156950C2776401178 @default.
- W3129156950 hasConceptScore W3129156950C2779386606 @default.
- W3129156950 hasConceptScore W3129156950C2781297163 @default.
- W3129156950 hasConceptScore W3129156950C41008148 @default.
- W3129156950 hasConceptScore W3129156950C41895202 @default.
- W3129156950 hasConceptScore W3129156950C50644808 @default.
- W3129156950 hasConceptScore W3129156950C52622490 @default.
- W3129156950 hasConceptScore W3129156950C81363708 @default.
- W3129156950 hasConceptScore W3129156950C90805587 @default.
- W3129156950 hasIssue "5" @default.
- W3129156950 hasLocation W31291569501 @default.
- W3129156950 hasLocation W31291569502 @default.
- W3129156950 hasOpenAccess W3129156950 @default.
- W3129156950 hasPrimaryLocation W31291569501 @default.
- W3129156950 hasRelatedWork W2059299633 @default.
- W3129156950 hasRelatedWork W2158785961 @default.
- W3129156950 hasRelatedWork W2162807427 @default.
- W3129156950 hasRelatedWork W2279398222 @default.
- W3129156950 hasRelatedWork W2732542196 @default.
- W3129156950 hasRelatedWork W2738221750 @default.
- W3129156950 hasRelatedWork W2773120646 @default.
- W3129156950 hasRelatedWork W3011074480 @default.
- W3129156950 hasRelatedWork W3156786002 @default.
- W3129156950 hasRelatedWork W4299822940 @default.
- W3129156950 hasVolume "5" @default.
- W3129156950 isParatext "false" @default.
- W3129156950 isRetracted "false" @default.
- W3129156950 magId "3129156950" @default.
- W3129156950 workType "article" @default.