Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129208417> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3129208417 abstract "A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with Logistic-normal noise is specified for the latent weight dynamics and the class-preserving property of the logistic-normal is used to reduce the dimension of the latent space and to build a compositional factor model. The projection used in the dimensionality reduction is based on a dynamic clustering process which partitions the large set of predictive densities into a smaller number of subsets. We exploit the state space form of the model to provide an efficient inference procedure based on Particle MCMC. The approach is applied to track the Standard & Poor 500 index combining 3712 predictive densities, based on 1856 US individual stocks, clustered in relatively small number of model sets. For the period 2007-2009, which included the financial crisis, substantial predictive gains are obtained, in particular, in the tails using Value-at-Risk. Similar predictive gains are obtained for the US Treasury Bill yield using a large set of macroeconomic variables. Evidence obtained on model set incompleteness and dynamic patterns in the financial clusters provide valuable signals for improved modelling and more effective economic and financial decisions." @default.
- W3129208417 created "2021-03-01" @default.
- W3129208417 creator A5002657304 @default.
- W3129208417 creator A5028814595 @default.
- W3129208417 creator A5058836069 @default.
- W3129208417 creator A5073525333 @default.
- W3129208417 date "2020-01-01" @default.
- W3129208417 modified "2023-09-28" @default.
- W3129208417 title "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance" @default.
- W3129208417 hasPublicationYear "2020" @default.
- W3129208417 type Work @default.
- W3129208417 sameAs 3129208417 @default.
- W3129208417 citedByCount "0" @default.
- W3129208417 crossrefType "posted-content" @default.
- W3129208417 hasAuthorship W3129208417A5002657304 @default.
- W3129208417 hasAuthorship W3129208417A5028814595 @default.
- W3129208417 hasAuthorship W3129208417A5058836069 @default.
- W3129208417 hasAuthorship W3129208417A5073525333 @default.
- W3129208417 hasConcept C10138342 @default.
- W3129208417 hasConcept C105795698 @default.
- W3129208417 hasConcept C107673813 @default.
- W3129208417 hasConcept C149782125 @default.
- W3129208417 hasConcept C154945302 @default.
- W3129208417 hasConcept C155702961 @default.
- W3129208417 hasConcept C160234255 @default.
- W3129208417 hasConcept C162324750 @default.
- W3129208417 hasConcept C33923547 @default.
- W3129208417 hasConcept C41008148 @default.
- W3129208417 hasConcept C70518039 @default.
- W3129208417 hasConcept C73555534 @default.
- W3129208417 hasConceptScore W3129208417C10138342 @default.
- W3129208417 hasConceptScore W3129208417C105795698 @default.
- W3129208417 hasConceptScore W3129208417C107673813 @default.
- W3129208417 hasConceptScore W3129208417C149782125 @default.
- W3129208417 hasConceptScore W3129208417C154945302 @default.
- W3129208417 hasConceptScore W3129208417C155702961 @default.
- W3129208417 hasConceptScore W3129208417C160234255 @default.
- W3129208417 hasConceptScore W3129208417C162324750 @default.
- W3129208417 hasConceptScore W3129208417C33923547 @default.
- W3129208417 hasConceptScore W3129208417C41008148 @default.
- W3129208417 hasConceptScore W3129208417C70518039 @default.
- W3129208417 hasConceptScore W3129208417C73555534 @default.
- W3129208417 hasLocation W31292084171 @default.
- W3129208417 hasOpenAccess W3129208417 @default.
- W3129208417 hasPrimaryLocation W31292084171 @default.
- W3129208417 hasRelatedWork W2067230193 @default.
- W3129208417 hasRelatedWork W2078051489 @default.
- W3129208417 hasRelatedWork W2161839304 @default.
- W3129208417 hasRelatedWork W2292466958 @default.
- W3129208417 hasRelatedWork W2563368355 @default.
- W3129208417 hasRelatedWork W2626381514 @default.
- W3129208417 hasRelatedWork W2757830207 @default.
- W3129208417 hasRelatedWork W2786129266 @default.
- W3129208417 hasRelatedWork W2938749035 @default.
- W3129208417 hasRelatedWork W2965471439 @default.
- W3129208417 hasRelatedWork W3003847538 @default.
- W3129208417 hasRelatedWork W3017273618 @default.
- W3129208417 hasRelatedWork W3121139060 @default.
- W3129208417 hasRelatedWork W3121883480 @default.
- W3129208417 hasRelatedWork W3122572879 @default.
- W3129208417 hasRelatedWork W3123049573 @default.
- W3129208417 hasRelatedWork W3125077199 @default.
- W3129208417 hasRelatedWork W3128811725 @default.
- W3129208417 hasRelatedWork W3193433920 @default.
- W3129208417 hasRelatedWork W3202853725 @default.
- W3129208417 isParatext "false" @default.
- W3129208417 isRetracted "false" @default.
- W3129208417 magId "3129208417" @default.
- W3129208417 workType "article" @default.