Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129216963> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3129216963 endingPage "10" @default.
- W3129216963 startingPage "1" @default.
- W3129216963 abstract "As gasoline is the main fuel of small vehicles, the exhaust emissions from its combustion will affect air quality. The focus of gasoline cleaning is to reduce the sulfur and olefin content in gasoline while maintaining its RON as much as possible. The reduction of RON will bring great economic losses to enterprises. Therefore, it is very important for petrochemical enterprises to construct a RON loss model in the gasoline refining process. The model construction, which reduces RON loss during gasoline refining, is the main question in this paper. By Python and SPSS software, we got two variable filtering methods: the random forest importance filtering and PCA filtering, and combined with SVR and random forest models, RON of the product and sulfur content were predicted. The filtering order of the original data by Excel and Python is maximum and minimum removal, 3σ criterion removal, deletion of too many sites in incomplete data, and filling of empty values in the mean within two hours. Several RON prediction models were established with the help of Python software, and the variables selected were compared by two filtering methods: one is the SVR model based on Gaussian, linear, polynomial, and Sigmoid kernel functions; the other is the random forest model. The sulfur content and RON prediction model was constructed, which use evaluation functions such as MSE, <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <msup> <mrow> <mi>R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </math> , and RMSE to evaluate and sulfur content as the subject condition. We convert the problem into linear and nonlinear model variable optimization problems: the linear model is the variable selected by the SVR linear kernel function model and random forest; the nonlinear model is the combination of variables selected by the random forest model and random forest. Optimizing for each sample, the optimization method is to find the optimal solution for each variable and use the optimal method for each variable as the local optimal solution for the sample. The two models are evaluated from the perspectives of optimization degree, optimization rate, model running speed, etc." @default.
- W3129216963 created "2021-03-01" @default.
- W3129216963 creator A5019189212 @default.
- W3129216963 creator A5031146697 @default.
- W3129216963 creator A5039832836 @default.
- W3129216963 creator A5085562561 @default.
- W3129216963 date "2021-02-19" @default.
- W3129216963 modified "2023-10-16" @default.
- W3129216963 title "The Optimization Model for Reducing RON Loss in Gasoline Refining Process" @default.
- W3129216963 cites W1513766491 @default.
- W3129216963 cites W1991693972 @default.
- W3129216963 cites W2111595494 @default.
- W3129216963 cites W2121601095 @default.
- W3129216963 cites W2138451337 @default.
- W3129216963 cites W2156909104 @default.
- W3129216963 cites W2900474195 @default.
- W3129216963 cites W3024684572 @default.
- W3129216963 cites W3025452011 @default.
- W3129216963 cites W3047453419 @default.
- W3129216963 cites W3108591059 @default.
- W3129216963 cites W3111700036 @default.
- W3129216963 doi "https://doi.org/10.1155/2021/5520942" @default.
- W3129216963 hasPublicationYear "2021" @default.
- W3129216963 type Work @default.
- W3129216963 sameAs 3129216963 @default.
- W3129216963 citedByCount "2" @default.
- W3129216963 countsByYear W31292169632021 @default.
- W3129216963 countsByYear W31292169632023 @default.
- W3129216963 crossrefType "journal-article" @default.
- W3129216963 hasAuthorship W3129216963A5019189212 @default.
- W3129216963 hasAuthorship W3129216963A5031146697 @default.
- W3129216963 hasAuthorship W3129216963A5039832836 @default.
- W3129216963 hasAuthorship W3129216963A5085562561 @default.
- W3129216963 hasBestOaLocation W31292169631 @default.
- W3129216963 hasConcept C103697071 @default.
- W3129216963 hasConcept C111919701 @default.
- W3129216963 hasConcept C11413529 @default.
- W3129216963 hasConcept C127413603 @default.
- W3129216963 hasConcept C154945302 @default.
- W3129216963 hasConcept C169258074 @default.
- W3129216963 hasConcept C33923547 @default.
- W3129216963 hasConcept C41008148 @default.
- W3129216963 hasConcept C519991488 @default.
- W3129216963 hasConcept C548081761 @default.
- W3129216963 hasConceptScore W3129216963C103697071 @default.
- W3129216963 hasConceptScore W3129216963C111919701 @default.
- W3129216963 hasConceptScore W3129216963C11413529 @default.
- W3129216963 hasConceptScore W3129216963C127413603 @default.
- W3129216963 hasConceptScore W3129216963C154945302 @default.
- W3129216963 hasConceptScore W3129216963C169258074 @default.
- W3129216963 hasConceptScore W3129216963C33923547 @default.
- W3129216963 hasConceptScore W3129216963C41008148 @default.
- W3129216963 hasConceptScore W3129216963C519991488 @default.
- W3129216963 hasConceptScore W3129216963C548081761 @default.
- W3129216963 hasFunder F4320324173 @default.
- W3129216963 hasLocation W31292169631 @default.
- W3129216963 hasOpenAccess W3129216963 @default.
- W3129216963 hasPrimaryLocation W31292169631 @default.
- W3129216963 hasRelatedWork W2327204559 @default.
- W3129216963 hasRelatedWork W2386767533 @default.
- W3129216963 hasRelatedWork W2587671147 @default.
- W3129216963 hasRelatedWork W2623240261 @default.
- W3129216963 hasRelatedWork W2983269456 @default.
- W3129216963 hasRelatedWork W3129254793 @default.
- W3129216963 hasRelatedWork W4280494160 @default.
- W3129216963 hasRelatedWork W4285225238 @default.
- W3129216963 hasRelatedWork W4367335861 @default.
- W3129216963 hasRelatedWork W790102723 @default.
- W3129216963 hasVolume "2021" @default.
- W3129216963 isParatext "false" @default.
- W3129216963 isRetracted "false" @default.
- W3129216963 magId "3129216963" @default.
- W3129216963 workType "article" @default.