Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129224130> ?p ?o ?g. }
- W3129224130 endingPage "e23328" @default.
- W3129224130 startingPage "e23328" @default.
- W3129224130 abstract "Background Generative adversarial network (GAN)–based synthetic images can be viable solutions to current supervised deep learning challenges. However, generating highly realistic images is a prerequisite for these approaches. Objective The aim of this study was to investigate and validate the unsupervised synthesis of highly realistic body computed tomography (CT) images by using a progressive growing GAN (PGGAN) trained to learn the probability distribution of normal data. Methods We trained the PGGAN by using 11,755 body CT scans. Ten radiologists (4 radiologists with <5 years of experience [Group I], 4 radiologists with 5-10 years of experience [Group II], and 2 radiologists with >10 years of experience [Group III]) evaluated the results in a binary approach by using an independent validation set of 300 images (150 real and 150 synthetic) to judge the authenticity of each image. Results The mean accuracy of the 10 readers in the entire image set was higher than random guessing (1781/3000, 59.4% vs 1500/3000, 50.0%, respectively; P<.001). However, in terms of identifying synthetic images as fake, there was no significant difference in the specificity between the visual Turing test and random guessing (779/1500, 51.9% vs 750/1500, 50.0%, respectively; P=.29). The accuracy between the 3 reader groups with different experience levels was not significantly different (Group I, 696/1200, 58.0%; Group II, 726/1200, 60.5%; and Group III, 359/600, 59.8%; P=.36). Interreader agreements were poor (κ=0.11) for the entire image set. In subgroup analysis, the discrepancies between real and synthetic CT images occurred mainly in the thoracoabdominal junction and in the anatomical details. Conclusions The GAN can synthesize highly realistic high-resolution body CT images that are indistinguishable from real images; however, it has limitations in generating body images of the thoracoabdominal junction and lacks accuracy in the anatomical details." @default.
- W3129224130 created "2021-03-01" @default.
- W3129224130 creator A5004946653 @default.
- W3129224130 creator A5008101431 @default.
- W3129224130 creator A5010725681 @default.
- W3129224130 creator A5028436330 @default.
- W3129224130 creator A5036897288 @default.
- W3129224130 creator A5061767669 @default.
- W3129224130 creator A5066699724 @default.
- W3129224130 creator A5088227081 @default.
- W3129224130 date "2021-03-17" @default.
- W3129224130 modified "2023-09-23" @default.
- W3129224130 title "Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test" @default.
- W3129224130 cites W1553268803 @default.
- W3129224130 cites W2149588678 @default.
- W3129224130 cites W2163663025 @default.
- W3129224130 cites W2594721753 @default.
- W3129224130 cites W2599354622 @default.
- W3129224130 cites W2610332124 @default.
- W3129224130 cites W2617669016 @default.
- W3129224130 cites W2757201831 @default.
- W3129224130 cites W2767236661 @default.
- W3129224130 cites W2777186991 @default.
- W3129224130 cites W2781600508 @default.
- W3129224130 cites W2789728745 @default.
- W3129224130 cites W2794022343 @default.
- W3129224130 cites W2798401174 @default.
- W3129224130 cites W2800433434 @default.
- W3129224130 cites W2887746098 @default.
- W3129224130 cites W2890139949 @default.
- W3129224130 cites W2900003150 @default.
- W3129224130 cites W2904319976 @default.
- W3129224130 cites W2909024729 @default.
- W3129224130 cites W2916412824 @default.
- W3129224130 cites W2945263066 @default.
- W3129224130 cites W2946637133 @default.
- W3129224130 cites W2963768110 @default.
- W3129224130 cites W2963882942 @default.
- W3129224130 cites W2964261464 @default.
- W3129224130 cites W2964481084 @default.
- W3129224130 cites W2965900506 @default.
- W3129224130 cites W3005352289 @default.
- W3129224130 cites W3047625747 @default.
- W3129224130 cites W3101639073 @default.
- W3129224130 cites W3101647981 @default.
- W3129224130 cites W3103316509 @default.
- W3129224130 cites W4226348722 @default.
- W3129224130 doi "https://doi.org/10.2196/23328" @default.
- W3129224130 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8077702" @default.
- W3129224130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33609339" @default.
- W3129224130 hasPublicationYear "2021" @default.
- W3129224130 type Work @default.
- W3129224130 sameAs 3129224130 @default.
- W3129224130 citedByCount "12" @default.
- W3129224130 countsByYear W31292241302021 @default.
- W3129224130 countsByYear W31292241302022 @default.
- W3129224130 countsByYear W31292241302023 @default.
- W3129224130 crossrefType "journal-article" @default.
- W3129224130 hasAuthorship W3129224130A5004946653 @default.
- W3129224130 hasAuthorship W3129224130A5008101431 @default.
- W3129224130 hasAuthorship W3129224130A5010725681 @default.
- W3129224130 hasAuthorship W3129224130A5028436330 @default.
- W3129224130 hasAuthorship W3129224130A5036897288 @default.
- W3129224130 hasAuthorship W3129224130A5061767669 @default.
- W3129224130 hasAuthorship W3129224130A5066699724 @default.
- W3129224130 hasAuthorship W3129224130A5088227081 @default.
- W3129224130 hasBestOaLocation W31292241301 @default.
- W3129224130 hasConcept C108583219 @default.
- W3129224130 hasConcept C115961682 @default.
- W3129224130 hasConcept C119857082 @default.
- W3129224130 hasConcept C121332964 @default.
- W3129224130 hasConcept C126838900 @default.
- W3129224130 hasConcept C153180895 @default.
- W3129224130 hasConcept C154945302 @default.
- W3129224130 hasConcept C163258240 @default.
- W3129224130 hasConcept C169903167 @default.
- W3129224130 hasConcept C177264268 @default.
- W3129224130 hasConcept C199360897 @default.
- W3129224130 hasConcept C2780992000 @default.
- W3129224130 hasConcept C2988773926 @default.
- W3129224130 hasConcept C41008148 @default.
- W3129224130 hasConcept C544519230 @default.
- W3129224130 hasConcept C58489278 @default.
- W3129224130 hasConcept C62520636 @default.
- W3129224130 hasConcept C71924100 @default.
- W3129224130 hasConceptScore W3129224130C108583219 @default.
- W3129224130 hasConceptScore W3129224130C115961682 @default.
- W3129224130 hasConceptScore W3129224130C119857082 @default.
- W3129224130 hasConceptScore W3129224130C121332964 @default.
- W3129224130 hasConceptScore W3129224130C126838900 @default.
- W3129224130 hasConceptScore W3129224130C153180895 @default.
- W3129224130 hasConceptScore W3129224130C154945302 @default.
- W3129224130 hasConceptScore W3129224130C163258240 @default.
- W3129224130 hasConceptScore W3129224130C169903167 @default.
- W3129224130 hasConceptScore W3129224130C177264268 @default.
- W3129224130 hasConceptScore W3129224130C199360897 @default.
- W3129224130 hasConceptScore W3129224130C2780992000 @default.
- W3129224130 hasConceptScore W3129224130C2988773926 @default.