Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129332807> ?p ?o ?g. }
- W3129332807 abstract "Abstract Background Genotype–phenotype predictions are of great importance in genetics. These predictions can help to find genetic mutations causing variations in human beings. There are many approaches for finding the association which can be broadly categorized into two classes, statistical techniques, and machine learning. Statistical techniques are good for finding the actual SNPs causing variation where Machine Learning techniques are good where we just want to classify the people into different categories. In this article, we examined the Eye-color and Type-2 diabetes phenotype. The proposed technique is a hybrid approach consisting of some parts from statistical techniques and remaining from Machine learning. Results The main dataset for Eye-color phenotype consists of 806 people. 404 people have Blue-Green eyes where 402 people have Brown eyes. After preprocessing we generated 8 different datasets, containing different numbers of SNPs, using the mutation difference and thresholding at individual SNP. We calculated three types of mutation at each SNP no mutation, partial mutation, and full mutation. After that data is transformed for machine learning algorithms. We used about 9 classifiers, RandomForest, Extreme Gradient boosting, ANN, LSTM, GRU, BILSTM, 1DCNN, ensembles of ANN, and ensembles of LSTM which gave the best accuracy of 0.91, 0.9286, 0.945, 0.94, 0.94, 0.92, 0.95, and 0.96% respectively. Stacked ensembles of LSTM outperformed other algorithms for 1560 SNPs with an overall accuracy of 0.96, AUC = 0.98 for brown eyes, and AUC = 0.97 for Blue-Green eyes. The main dataset for Type-2 diabetes consists of 107 people where 30 people are classified as cases and 74 people as controls. We used different linear threshold to find the optimal number of SNPs for classification. The final model gave an accuracy of 0.97%. Conclusion Genotype–phenotype predictions are very useful especially in forensic. These predictions can help to identify SNP variant association with traits and diseases. Given more datasets, machine learning model predictions can be increased. Moreover, the non-linearity in the Machine learning model and the combination of SNPs Mutations while training the model increases the prediction. We considered binary classification problems but the proposed approach can be extended to multi-class classification." @default.
- W3129332807 created "2021-03-01" @default.
- W3129332807 creator A5033739451 @default.
- W3129332807 creator A5075543445 @default.
- W3129332807 date "2021-04-19" @default.
- W3129332807 modified "2023-10-07" @default.
- W3129332807 title "Eye-color and Type-2 diabetes phenotype prediction from genotype data using deep learning methods" @default.
- W3129332807 cites W1509092951 @default.
- W3129332807 cites W1518913409 @default.
- W3129332807 cites W1580317431 @default.
- W3129332807 cites W1847429134 @default.
- W3129332807 cites W1969118497 @default.
- W3129332807 cites W1973536516 @default.
- W3129332807 cites W2039608769 @default.
- W3129332807 cites W2041467022 @default.
- W3129332807 cites W2043585054 @default.
- W3129332807 cites W2054856453 @default.
- W3129332807 cites W2060261318 @default.
- W3129332807 cites W2064675550 @default.
- W3129332807 cites W2105082398 @default.
- W3129332807 cites W2118685291 @default.
- W3129332807 cites W2124912533 @default.
- W3129332807 cites W2137219016 @default.
- W3129332807 cites W2159771235 @default.
- W3129332807 cites W2169294950 @default.
- W3129332807 cites W2259938310 @default.
- W3129332807 cites W2323599384 @default.
- W3129332807 cites W2606562533 @default.
- W3129332807 cites W2784573484 @default.
- W3129332807 cites W2793555278 @default.
- W3129332807 cites W2885195348 @default.
- W3129332807 cites W2887039631 @default.
- W3129332807 cites W2887711510 @default.
- W3129332807 cites W2889381121 @default.
- W3129332807 cites W2893971263 @default.
- W3129332807 cites W2899355278 @default.
- W3129332807 cites W2919165031 @default.
- W3129332807 cites W2922701384 @default.
- W3129332807 cites W2922844241 @default.
- W3129332807 cites W2941545432 @default.
- W3129332807 cites W2942441318 @default.
- W3129332807 cites W2948009788 @default.
- W3129332807 cites W2959750635 @default.
- W3129332807 cites W2981502071 @default.
- W3129332807 cites W2983229458 @default.
- W3129332807 cites W2985452234 @default.
- W3129332807 cites W3015113267 @default.
- W3129332807 cites W3015120339 @default.
- W3129332807 cites W3017209650 @default.
- W3129332807 cites W3041275227 @default.
- W3129332807 cites W3087507349 @default.
- W3129332807 cites W3102476541 @default.
- W3129332807 cites W3159240503 @default.
- W3129332807 cites W4256060553 @default.
- W3129332807 cites W2775640522 @default.
- W3129332807 doi "https://doi.org/10.1186/s12859-021-04077-9" @default.
- W3129332807 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8056510" @default.
- W3129332807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33874881" @default.
- W3129332807 hasPublicationYear "2021" @default.
- W3129332807 type Work @default.
- W3129332807 sameAs 3129332807 @default.
- W3129332807 citedByCount "8" @default.
- W3129332807 countsByYear W31293328072021 @default.
- W3129332807 countsByYear W31293328072022 @default.
- W3129332807 countsByYear W31293328072023 @default.
- W3129332807 crossrefType "journal-article" @default.
- W3129332807 hasAuthorship W3129332807A5033739451 @default.
- W3129332807 hasAuthorship W3129332807A5075543445 @default.
- W3129332807 hasBestOaLocation W31293328071 @default.
- W3129332807 hasConcept C104317684 @default.
- W3129332807 hasConcept C108583219 @default.
- W3129332807 hasConcept C115961682 @default.
- W3129332807 hasConcept C119857082 @default.
- W3129332807 hasConcept C127716648 @default.
- W3129332807 hasConcept C135763542 @default.
- W3129332807 hasConcept C139275648 @default.
- W3129332807 hasConcept C153180895 @default.
- W3129332807 hasConcept C153209595 @default.
- W3129332807 hasConcept C154945302 @default.
- W3129332807 hasConcept C191178318 @default.
- W3129332807 hasConcept C34736171 @default.
- W3129332807 hasConcept C41008148 @default.
- W3129332807 hasConcept C501734568 @default.
- W3129332807 hasConcept C54355233 @default.
- W3129332807 hasConcept C86803240 @default.
- W3129332807 hasConceptScore W3129332807C104317684 @default.
- W3129332807 hasConceptScore W3129332807C108583219 @default.
- W3129332807 hasConceptScore W3129332807C115961682 @default.
- W3129332807 hasConceptScore W3129332807C119857082 @default.
- W3129332807 hasConceptScore W3129332807C127716648 @default.
- W3129332807 hasConceptScore W3129332807C135763542 @default.
- W3129332807 hasConceptScore W3129332807C139275648 @default.
- W3129332807 hasConceptScore W3129332807C153180895 @default.
- W3129332807 hasConceptScore W3129332807C153209595 @default.
- W3129332807 hasConceptScore W3129332807C154945302 @default.
- W3129332807 hasConceptScore W3129332807C191178318 @default.
- W3129332807 hasConceptScore W3129332807C34736171 @default.
- W3129332807 hasConceptScore W3129332807C41008148 @default.
- W3129332807 hasConceptScore W3129332807C501734568 @default.
- W3129332807 hasConceptScore W3129332807C54355233 @default.