Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129337631> ?p ?o ?g. }
- W3129337631 endingPage "084013" @default.
- W3129337631 startingPage "084013" @default.
- W3129337631 abstract "Abstract Aircraft structures are exposed to impact damage caused by debris and hail during their service life. One of the design concerns in composite structures is the resistance of layered surfaces to damage, which occurs from impacts with various foreign objects. Therefore, the impact localization and damage quantification of impacts should be studied and considered to address flight safety and to reduce costs associated with a regularly scheduled visual inspection. Since the structural components of the aircraft are large scale, visual inspection and monitoring are challenging and subject to human error. This paper presents a promising solution that can automatically detect and localize an impact that may occur during flight. To achieve this goal, acoustic emission (AE) is employed as an impact monitoring approach. Random forest and deep learning were adopted for training the source location models. An AE dataset was collected by conducting an impact experiment on a full-size thermoplastic aircraft elevator in a laboratory environment. A dataset consisting of AE parametric features and a dataset consisting of AE waveforms were assigned to a random forest classifier and deep learning network for the investigation of their applicability of impact source localization. The results obtained were compared using the source localization approach in previous research using a conventional artificial neural network. The analysis of results shows the random forest and deep learning leads to better event localization performance. In addition, the random forest model can provide the importance of features. By deleting the least important features, the storage required to save the input and the computing time for the random forest is greatly reduced, and an acceptable localization performance can still be obtained." @default.
- W3129337631 created "2021-03-01" @default.
- W3129337631 creator A5001621109 @default.
- W3129337631 creator A5010067308 @default.
- W3129337631 creator A5032876616 @default.
- W3129337631 creator A5063309107 @default.
- W3129337631 creator A5069442158 @default.
- W3129337631 date "2021-05-19" @default.
- W3129337631 modified "2023-10-16" @default.
- W3129337631 title "Detection of impact on aircraft composite structure using machine learning techniques" @default.
- W3129337631 cites W1988914387 @default.
- W3129337631 cites W1989361407 @default.
- W3129337631 cites W1991387725 @default.
- W3129337631 cites W1999380910 @default.
- W3129337631 cites W2017554280 @default.
- W3129337631 cites W2041786832 @default.
- W3129337631 cites W2100495367 @default.
- W3129337631 cites W2107878631 @default.
- W3129337631 cites W2155261478 @default.
- W3129337631 cites W2287029277 @default.
- W3129337631 cites W2558094457 @default.
- W3129337631 cites W2581853886 @default.
- W3129337631 cites W2606329139 @default.
- W3129337631 cites W2771371125 @default.
- W3129337631 cites W2802943870 @default.
- W3129337631 cites W2807866836 @default.
- W3129337631 cites W2900419400 @default.
- W3129337631 cites W2904524495 @default.
- W3129337631 cites W2911964244 @default.
- W3129337631 cites W2922209612 @default.
- W3129337631 cites W2945697543 @default.
- W3129337631 cites W2958191091 @default.
- W3129337631 cites W2985875855 @default.
- W3129337631 cites W2999071858 @default.
- W3129337631 cites W3043946036 @default.
- W3129337631 cites W3107083235 @default.
- W3129337631 doi "https://doi.org/10.1088/1361-6501/abe790" @default.
- W3129337631 hasPublicationYear "2021" @default.
- W3129337631 type Work @default.
- W3129337631 sameAs 3129337631 @default.
- W3129337631 citedByCount "29" @default.
- W3129337631 countsByYear W31293376312021 @default.
- W3129337631 countsByYear W31293376312022 @default.
- W3129337631 countsByYear W31293376312023 @default.
- W3129337631 crossrefType "journal-article" @default.
- W3129337631 hasAuthorship W3129337631A5001621109 @default.
- W3129337631 hasAuthorship W3129337631A5010067308 @default.
- W3129337631 hasAuthorship W3129337631A5032876616 @default.
- W3129337631 hasAuthorship W3129337631A5063309107 @default.
- W3129337631 hasAuthorship W3129337631A5069442158 @default.
- W3129337631 hasConcept C105795698 @default.
- W3129337631 hasConcept C108583219 @default.
- W3129337631 hasConcept C117251300 @default.
- W3129337631 hasConcept C119857082 @default.
- W3129337631 hasConcept C121332964 @default.
- W3129337631 hasConcept C154945302 @default.
- W3129337631 hasConcept C169258074 @default.
- W3129337631 hasConcept C2779662365 @default.
- W3129337631 hasConcept C2984842247 @default.
- W3129337631 hasConcept C33923547 @default.
- W3129337631 hasConcept C41008148 @default.
- W3129337631 hasConcept C44154836 @default.
- W3129337631 hasConcept C50644808 @default.
- W3129337631 hasConcept C62520636 @default.
- W3129337631 hasConcept C95623464 @default.
- W3129337631 hasConceptScore W3129337631C105795698 @default.
- W3129337631 hasConceptScore W3129337631C108583219 @default.
- W3129337631 hasConceptScore W3129337631C117251300 @default.
- W3129337631 hasConceptScore W3129337631C119857082 @default.
- W3129337631 hasConceptScore W3129337631C121332964 @default.
- W3129337631 hasConceptScore W3129337631C154945302 @default.
- W3129337631 hasConceptScore W3129337631C169258074 @default.
- W3129337631 hasConceptScore W3129337631C2779662365 @default.
- W3129337631 hasConceptScore W3129337631C2984842247 @default.
- W3129337631 hasConceptScore W3129337631C33923547 @default.
- W3129337631 hasConceptScore W3129337631C41008148 @default.
- W3129337631 hasConceptScore W3129337631C44154836 @default.
- W3129337631 hasConceptScore W3129337631C50644808 @default.
- W3129337631 hasConceptScore W3129337631C62520636 @default.
- W3129337631 hasConceptScore W3129337631C95623464 @default.
- W3129337631 hasFunder F4320306101 @default.
- W3129337631 hasIssue "8" @default.
- W3129337631 hasLocation W31293376311 @default.
- W3129337631 hasOpenAccess W3129337631 @default.
- W3129337631 hasPrimaryLocation W31293376311 @default.
- W3129337631 hasRelatedWork W2968586400 @default.
- W3129337631 hasRelatedWork W3211546796 @default.
- W3129337631 hasRelatedWork W4223564025 @default.
- W3129337631 hasRelatedWork W4223943233 @default.
- W3129337631 hasRelatedWork W4281616679 @default.
- W3129337631 hasRelatedWork W4312200629 @default.
- W3129337631 hasRelatedWork W4360585206 @default.
- W3129337631 hasRelatedWork W4364306694 @default.
- W3129337631 hasRelatedWork W4380075502 @default.
- W3129337631 hasRelatedWork W4380086463 @default.
- W3129337631 hasVolume "32" @default.
- W3129337631 isParatext "false" @default.
- W3129337631 isRetracted "false" @default.