Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129393721> ?p ?o ?g. }
- W3129393721 abstract "Tissue microarray (TMA) images have emerged as an important high-throughput tool for cancer study and the validation of biomarkers. Efforts have been dedicated to further improve the accuracy of TACOMA, a cutting-edge automatic scoring algorithm for TMA images. One major advance is due to deepTacoma, an algorithm that incorporates suitable deep representations of a group nature. Inspired by the recent advance in semi-supervised learning and deep learning, we propose mfTacoma to learn alternative deep representations in the context of TMA image scoring. In particular, mfTacoma learns the low-dimensional manifolds, a common latent structure in high dimensional data. Deep representation learning and manifold learning typically requires large data. By encoding deep representation of the manifolds as regularizing features, mfTacoma effectively leverages the manifold information that is potentially crude due to small data. Our experiments show that deep features by manifolds outperforms two alternatives -- deep features by linear manifolds with principal component analysis or by leveraging the group property." @default.
- W3129393721 created "2021-03-01" @default.
- W3129393721 creator A5060954578 @default.
- W3129393721 creator A5086868372 @default.
- W3129393721 creator A5090243070 @default.
- W3129393721 date "2021-02-22" @default.
- W3129393721 modified "2023-09-27" @default.
- W3129393721 title "Learning Low-dimensional Manifolds for Scoring of Tissue Microarray Images." @default.
- W3129393721 cites W1555148682 @default.
- W3129393721 cites W1595132914 @default.
- W3129393721 cites W1881179018 @default.
- W3129393721 cites W1969394054 @default.
- W3129393721 cites W1985098533 @default.
- W3129393721 cites W1986677787 @default.
- W3129393721 cites W1989790390 @default.
- W3129393721 cites W1992443647 @default.
- W3129393721 cites W1993970782 @default.
- W3129393721 cites W2001141328 @default.
- W3129393721 cites W2020632674 @default.
- W3129393721 cites W2025064394 @default.
- W3129393721 cites W2026325103 @default.
- W3129393721 cites W2032791132 @default.
- W3129393721 cites W2048521685 @default.
- W3129393721 cites W2053186076 @default.
- W3129393721 cites W2056264529 @default.
- W3129393721 cites W2059432853 @default.
- W3129393721 cites W206278033 @default.
- W3129393721 cites W2071128523 @default.
- W3129393721 cites W2072648072 @default.
- W3129393721 cites W2078169902 @default.
- W3129393721 cites W2082516011 @default.
- W3129393721 cites W2087810003 @default.
- W3129393721 cites W2097308346 @default.
- W3129393721 cites W2100495367 @default.
- W3129393721 cites W2104290444 @default.
- W3129393721 cites W2107179775 @default.
- W3129393721 cites W2110243528 @default.
- W3129393721 cites W2112076978 @default.
- W3129393721 cites W2114965121 @default.
- W3129393721 cites W2119821739 @default.
- W3129393721 cites W2120425068 @default.
- W3129393721 cites W2121451737 @default.
- W3129393721 cites W2125577269 @default.
- W3129393721 cites W2127412270 @default.
- W3129393721 cites W2128302979 @default.
- W3129393721 cites W2136504847 @default.
- W3129393721 cites W2149916722 @default.
- W3129393721 cites W2156838815 @default.
- W3129393721 cites W2160416036 @default.
- W3129393721 cites W2163133908 @default.
- W3129393721 cites W2190906607 @default.
- W3129393721 cites W2262407041 @default.
- W3129393721 cites W2403927937 @default.
- W3129393721 cites W2557283755 @default.
- W3129393721 cites W2763211003 @default.
- W3129393721 cites W2803911450 @default.
- W3129393721 cites W2911964244 @default.
- W3129393721 cites W2919115771 @default.
- W3129393721 cites W2964216716 @default.
- W3129393721 cites W59975075 @default.
- W3129393721 hasPublicationYear "2021" @default.
- W3129393721 type Work @default.
- W3129393721 sameAs 3129393721 @default.
- W3129393721 citedByCount "0" @default.
- W3129393721 crossrefType "posted-content" @default.
- W3129393721 hasAuthorship W3129393721A5060954578 @default.
- W3129393721 hasAuthorship W3129393721A5086868372 @default.
- W3129393721 hasAuthorship W3129393721A5090243070 @default.
- W3129393721 hasConcept C108583219 @default.
- W3129393721 hasConcept C111472728 @default.
- W3129393721 hasConcept C115961682 @default.
- W3129393721 hasConcept C116409475 @default.
- W3129393721 hasConcept C119857082 @default.
- W3129393721 hasConcept C125411270 @default.
- W3129393721 hasConcept C127313418 @default.
- W3129393721 hasConcept C127413603 @default.
- W3129393721 hasConcept C138885662 @default.
- W3129393721 hasConcept C151730666 @default.
- W3129393721 hasConcept C151876577 @default.
- W3129393721 hasConcept C153180895 @default.
- W3129393721 hasConcept C154945302 @default.
- W3129393721 hasConcept C17744445 @default.
- W3129393721 hasConcept C189950617 @default.
- W3129393721 hasConcept C199539241 @default.
- W3129393721 hasConcept C27438332 @default.
- W3129393721 hasConcept C2776359362 @default.
- W3129393721 hasConcept C2779343474 @default.
- W3129393721 hasConcept C41008148 @default.
- W3129393721 hasConcept C529865628 @default.
- W3129393721 hasConcept C70518039 @default.
- W3129393721 hasConcept C78519656 @default.
- W3129393721 hasConcept C94625758 @default.
- W3129393721 hasConceptScore W3129393721C108583219 @default.
- W3129393721 hasConceptScore W3129393721C111472728 @default.
- W3129393721 hasConceptScore W3129393721C115961682 @default.
- W3129393721 hasConceptScore W3129393721C116409475 @default.
- W3129393721 hasConceptScore W3129393721C119857082 @default.
- W3129393721 hasConceptScore W3129393721C125411270 @default.
- W3129393721 hasConceptScore W3129393721C127313418 @default.
- W3129393721 hasConceptScore W3129393721C127413603 @default.