Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129429979> ?p ?o ?g. }
- W3129429979 endingPage "146" @default.
- W3129429979 startingPage "131" @default.
- W3129429979 abstract "In recent years, the rapid development of artificial intelligence and data science has given rise to the study of data driven algorithms in highly volatile systems. The scheduling of complex shop floor resources falls into such a category, which is often non-linear in nature, time varying, multi-objective, and subject to interruptions. Ergo, the machine learning-based scheduling, has become a research hotspot and attracted the attention of many scholars. In the literature, the research methods employed in solving scheduling problems are based on various perspectives, such as mathematical programming, combinatorial optimization, and heuristic rules. However, due to the inherent complexity of the problem, many issues remain to be addressed. In particular, with the availability of production data, the progress of computing power, and the breakthrough in intelligent algorithms, a novel branch of data driven algorithms present great potential, for example, the deep learning and reinforcement learning-based algorithms. To reveal the value of machine learning-based scheduling methods, bibliometric analysis was conducted to analyse the relevant articles and documents from the year 1980 to 2019. Finally, the future research trend in the domain of machine learning-based scheduling is considered and tips are provided for researchers as well as practitioners to find leading scientists for collaborations." @default.
- W3129429979 created "2021-03-01" @default.
- W3129429979 creator A5004688866 @default.
- W3129429979 creator A5008123999 @default.
- W3129429979 creator A5014142554 @default.
- W3129429979 creator A5052543973 @default.
- W3129429979 creator A5077670869 @default.
- W3129429979 creator A5078165613 @default.
- W3129429979 creator A5081960668 @default.
- W3129429979 date "2021-02-16" @default.
- W3129429979 modified "2023-09-26" @default.
- W3129429979 title "Machine learning‐based scheduling: a bibliometric perspective" @default.
- W3129429979 cites W1966804431 @default.
- W3129429979 cites W1976491873 @default.
- W3129429979 cites W1980111888 @default.
- W3129429979 cites W1983974888 @default.
- W3129429979 cites W1985921566 @default.
- W3129429979 cites W1987261608 @default.
- W3129429979 cites W1990699111 @default.
- W3129429979 cites W1993853979 @default.
- W3129429979 cites W1994940961 @default.
- W3129429979 cites W1997200022 @default.
- W3129429979 cites W2000630887 @default.
- W3129429979 cites W2002152339 @default.
- W3129429979 cites W2004438130 @default.
- W3129429979 cites W2009100149 @default.
- W3129429979 cites W2009274717 @default.
- W3129429979 cites W2009423917 @default.
- W3129429979 cites W2011234500 @default.
- W3129429979 cites W2020813379 @default.
- W3129429979 cites W2030236912 @default.
- W3129429979 cites W2051945096 @default.
- W3129429979 cites W2068770142 @default.
- W3129429979 cites W2076998221 @default.
- W3129429979 cites W2086640479 @default.
- W3129429979 cites W2093851652 @default.
- W3129429979 cites W2094870107 @default.
- W3129429979 cites W2099245132 @default.
- W3129429979 cites W2099929785 @default.
- W3129429979 cites W2119717200 @default.
- W3129429979 cites W2120386704 @default.
- W3129429979 cites W2122842398 @default.
- W3129429979 cites W2124715093 @default.
- W3129429979 cites W2141503635 @default.
- W3129429979 cites W2147466788 @default.
- W3129429979 cites W2158703918 @default.
- W3129429979 cites W2169337357 @default.
- W3129429979 cites W2198244262 @default.
- W3129429979 cites W2323284870 @default.
- W3129429979 cites W2343935207 @default.
- W3129429979 cites W2532994954 @default.
- W3129429979 cites W2548055351 @default.
- W3129429979 cites W2571075193 @default.
- W3129429979 cites W2618749399 @default.
- W3129429979 cites W2790861445 @default.
- W3129429979 cites W2804251482 @default.
- W3129429979 cites W2805268279 @default.
- W3129429979 cites W2810684840 @default.
- W3129429979 cites W2896868750 @default.
- W3129429979 cites W2898302070 @default.
- W3129429979 cites W2908084908 @default.
- W3129429979 cites W2911964244 @default.
- W3129429979 cites W2915564669 @default.
- W3129429979 cites W2916944508 @default.
- W3129429979 cites W2919115771 @default.
- W3129429979 cites W2941916820 @default.
- W3129429979 cites W2942715783 @default.
- W3129429979 cites W2952137279 @default.
- W3129429979 cites W2952578973 @default.
- W3129429979 cites W2963078014 @default.
- W3129429979 cites W2971858640 @default.
- W3129429979 cites W2974201054 @default.
- W3129429979 cites W2982143798 @default.
- W3129429979 cites W2982919137 @default.
- W3129429979 cites W2988096906 @default.
- W3129429979 cites W2993936449 @default.
- W3129429979 cites W3005335721 @default.
- W3129429979 cites W3012656115 @default.
- W3129429979 cites W3017771540 @default.
- W3129429979 cites W3035619533 @default.
- W3129429979 cites W3041202696 @default.
- W3129429979 cites W3049468855 @default.
- W3129429979 cites W3079713928 @default.
- W3129429979 cites W4249253882 @default.
- W3129429979 cites W2133940713 @default.
- W3129429979 doi "https://doi.org/10.1049/cim2.12004" @default.
- W3129429979 hasPublicationYear "2021" @default.
- W3129429979 type Work @default.
- W3129429979 sameAs 3129429979 @default.
- W3129429979 citedByCount "7" @default.
- W3129429979 countsByYear W31294299792021 @default.
- W3129429979 countsByYear W31294299792022 @default.
- W3129429979 countsByYear W31294299792023 @default.
- W3129429979 crossrefType "journal-article" @default.
- W3129429979 hasAuthorship W3129429979A5004688866 @default.
- W3129429979 hasAuthorship W3129429979A5008123999 @default.
- W3129429979 hasAuthorship W3129429979A5014142554 @default.
- W3129429979 hasAuthorship W3129429979A5052543973 @default.