Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129458077> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3129458077 abstract "Single-cell RNA sequencing (scRNAseq) enables the profiling of the transcriptomes of individual cells, thus characterizing the heterogeneity of biological samples since scRNAseq experiments are able to yield high volumes of data. Analyzing scRNAseq data will be beneficial for obtaining knowledge on cancer drug resistance, gene regulation in embryonic development, and mechanisms of stem cell differentiation and reprogramming. One common goal of scRNAseq data analytics is to identify the cell type of each individual cell that has been profiled. However, data sparsity is the main challenge due to limitations of current single-cell RNA sequencing techniques. In this paper, a novel method of representing the genes as gene embeddings is proposed to reduce data sparsity of scRNAseq data for cell type identification, which is inspired by similarities between gene system and natural language system. It contains two steps: 1) transform gene sequences into gene sentences by ranking genes in terms of their expression values; 2) employ the word2vec technique to learn gene embeddings on these gene sentences. Then we build three deep learning models, namely RNNs, Attention RNNs, and Bi-directional LSTM RNNs, for cell type classification. The proposed method is evaluated on macosko2015, a large scale scRNAseq dataset with ground truth of individual cell types. Experimental results show that the proposed method performs effectively and efficiently on identifying cell types on scRNAseq data, and it can achieve promising performance even learning on limited number of genes." @default.
- W3129458077 created "2021-03-01" @default.
- W3129458077 creator A5006284276 @default.
- W3129458077 creator A5013200597 @default.
- W3129458077 creator A5063982441 @default.
- W3129458077 creator A5081868212 @default.
- W3129458077 creator A5085031765 @default.
- W3129458077 date "2020-12-01" @default.
- W3129458077 modified "2023-09-26" @default.
- W3129458077 title "Cell Type Identification from Single-Cell Transcriptomic Data via Gene Embedding" @default.
- W3129458077 cites W1501531009 @default.
- W3129458077 cites W1766594731 @default.
- W3129458077 cites W1902237438 @default.
- W3129458077 cites W1979495886 @default.
- W3129458077 cites W2093205346 @default.
- W3129458077 cites W2102212449 @default.
- W3129458077 cites W2178888844 @default.
- W3129458077 cites W2252211741 @default.
- W3129458077 cites W2293634267 @default.
- W3129458077 cites W2470673105 @default.
- W3129458077 cites W2791796577 @default.
- W3129458077 cites W2799259690 @default.
- W3129458077 cites W2888944590 @default.
- W3129458077 cites W2897346235 @default.
- W3129458077 cites W2899447162 @default.
- W3129458077 cites W2908034108 @default.
- W3129458077 cites W2908304275 @default.
- W3129458077 cites W2915857439 @default.
- W3129458077 cites W2952631022 @default.
- W3129458077 cites W2955305484 @default.
- W3129458077 cites W2964643116 @default.
- W3129458077 cites W2966569571 @default.
- W3129458077 cites W2981132372 @default.
- W3129458077 cites W2996410336 @default.
- W3129458077 cites W2997038947 @default.
- W3129458077 doi "https://doi.org/10.1109/icmla51294.2020.00050" @default.
- W3129458077 hasPublicationYear "2020" @default.
- W3129458077 type Work @default.
- W3129458077 sameAs 3129458077 @default.
- W3129458077 citedByCount "2" @default.
- W3129458077 countsByYear W31294580772020 @default.
- W3129458077 countsByYear W31294580772023 @default.
- W3129458077 crossrefType "proceedings-article" @default.
- W3129458077 hasAuthorship W3129458077A5006284276 @default.
- W3129458077 hasAuthorship W3129458077A5013200597 @default.
- W3129458077 hasAuthorship W3129458077A5063982441 @default.
- W3129458077 hasAuthorship W3129458077A5081868212 @default.
- W3129458077 hasAuthorship W3129458077A5085031765 @default.
- W3129458077 hasConcept C116834253 @default.
- W3129458077 hasConcept C124101348 @default.
- W3129458077 hasConcept C1491633281 @default.
- W3129458077 hasConcept C154945302 @default.
- W3129458077 hasConcept C189014844 @default.
- W3129458077 hasConcept C41008148 @default.
- W3129458077 hasConcept C54355233 @default.
- W3129458077 hasConcept C59822182 @default.
- W3129458077 hasConcept C70721500 @default.
- W3129458077 hasConcept C86803240 @default.
- W3129458077 hasConceptScore W3129458077C116834253 @default.
- W3129458077 hasConceptScore W3129458077C124101348 @default.
- W3129458077 hasConceptScore W3129458077C1491633281 @default.
- W3129458077 hasConceptScore W3129458077C154945302 @default.
- W3129458077 hasConceptScore W3129458077C189014844 @default.
- W3129458077 hasConceptScore W3129458077C41008148 @default.
- W3129458077 hasConceptScore W3129458077C54355233 @default.
- W3129458077 hasConceptScore W3129458077C59822182 @default.
- W3129458077 hasConceptScore W3129458077C70721500 @default.
- W3129458077 hasConceptScore W3129458077C86803240 @default.
- W3129458077 hasFunder F4320306076 @default.
- W3129458077 hasFunder F4320333578 @default.
- W3129458077 hasLocation W31294580771 @default.
- W3129458077 hasOpenAccess W3129458077 @default.
- W3129458077 hasPrimaryLocation W31294580771 @default.
- W3129458077 hasRelatedWork W2128227827 @default.
- W3129458077 hasRelatedWork W2795381779 @default.
- W3129458077 hasRelatedWork W2891101800 @default.
- W3129458077 hasRelatedWork W2951914955 @default.
- W3129458077 hasRelatedWork W3013151148 @default.
- W3129458077 hasRelatedWork W3034061995 @default.
- W3129458077 hasRelatedWork W3034167770 @default.
- W3129458077 hasRelatedWork W3183621425 @default.
- W3129458077 hasRelatedWork W4296703446 @default.
- W3129458077 hasRelatedWork W4307358436 @default.
- W3129458077 isParatext "false" @default.
- W3129458077 isRetracted "false" @default.
- W3129458077 magId "3129458077" @default.
- W3129458077 workType "article" @default.