Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129603666> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3129603666 endingPage "257" @default.
- W3129603666 startingPage "257" @default.
- W3129603666 abstract "<p>This paper investigates the capability of six existing classification algorithms (Artificial Neural Network, Naïve Bayes, k-Nearest Neighbor, Support Vector Machine, Decision Tree and Random Forest) in classifying and predicting diseases in soybean and mushroom datasets using datasets with numerical or categorical attributes. While many similar studies have been conducted on datasets of images to predict plant diseases, the main objective of this study is to suggest classification methods that can be used for disease classification and prediction in datasets that contain raw measurements instead of images. A fungus and a plant dataset, which had many differences, were chosen so that the findings in this paper could be applied to future research for disease prediction and classification in a variety of datasets which contain raw measurements. A key difference between the two datasets, other than one being a fungus and one being a plant, is that the mushroom dataset is balanced and only contained two classes while the soybean dataset is imbalanced and contained eighteen classes. All six algorithms performed well on the mushroom dataset, while the Artificial Neural Network and k-Nearest Neighbor algorithms performed best on the soybean dataset. The findings of this paper can be applied to future research on disease classification and prediction in a variety of dataset types such as fungi, plants, humans, and animals.</p>" @default.
- W3129603666 created "2021-03-01" @default.
- W3129603666 creator A5051052094 @default.
- W3129603666 creator A5063978644 @default.
- W3129603666 creator A5064554196 @default.
- W3129603666 date "2021-03-01" @default.
- W3129603666 modified "2023-10-16" @default.
- W3129603666 title "Plant disease prediction using classification algorithms" @default.
- W3129603666 cites W2094577360 @default.
- W3129603666 cites W2117793557 @default.
- W3129603666 cites W2126131095 @default.
- W3129603666 cites W2140190241 @default.
- W3129603666 cites W2901015156 @default.
- W3129603666 cites W2980326368 @default.
- W3129603666 doi "https://doi.org/10.11591/ijai.v10.i1.pp257-264" @default.
- W3129603666 hasPublicationYear "2021" @default.
- W3129603666 type Work @default.
- W3129603666 sameAs 3129603666 @default.
- W3129603666 citedByCount "3" @default.
- W3129603666 countsByYear W31296036662023 @default.
- W3129603666 crossrefType "journal-article" @default.
- W3129603666 hasAuthorship W3129603666A5051052094 @default.
- W3129603666 hasAuthorship W3129603666A5063978644 @default.
- W3129603666 hasAuthorship W3129603666A5064554196 @default.
- W3129603666 hasBestOaLocation W31296036661 @default.
- W3129603666 hasConcept C110083411 @default.
- W3129603666 hasConcept C113238511 @default.
- W3129603666 hasConcept C119857082 @default.
- W3129603666 hasConcept C12267149 @default.
- W3129603666 hasConcept C124101348 @default.
- W3129603666 hasConcept C150903083 @default.
- W3129603666 hasConcept C153180895 @default.
- W3129603666 hasConcept C154945302 @default.
- W3129603666 hasConcept C169258074 @default.
- W3129603666 hasConcept C3019235130 @default.
- W3129603666 hasConcept C41008148 @default.
- W3129603666 hasConcept C50644808 @default.
- W3129603666 hasConcept C52001869 @default.
- W3129603666 hasConcept C5274069 @default.
- W3129603666 hasConcept C84525736 @default.
- W3129603666 hasConcept C86803240 @default.
- W3129603666 hasConceptScore W3129603666C110083411 @default.
- W3129603666 hasConceptScore W3129603666C113238511 @default.
- W3129603666 hasConceptScore W3129603666C119857082 @default.
- W3129603666 hasConceptScore W3129603666C12267149 @default.
- W3129603666 hasConceptScore W3129603666C124101348 @default.
- W3129603666 hasConceptScore W3129603666C150903083 @default.
- W3129603666 hasConceptScore W3129603666C153180895 @default.
- W3129603666 hasConceptScore W3129603666C154945302 @default.
- W3129603666 hasConceptScore W3129603666C169258074 @default.
- W3129603666 hasConceptScore W3129603666C3019235130 @default.
- W3129603666 hasConceptScore W3129603666C41008148 @default.
- W3129603666 hasConceptScore W3129603666C50644808 @default.
- W3129603666 hasConceptScore W3129603666C52001869 @default.
- W3129603666 hasConceptScore W3129603666C5274069 @default.
- W3129603666 hasConceptScore W3129603666C84525736 @default.
- W3129603666 hasConceptScore W3129603666C86803240 @default.
- W3129603666 hasIssue "1" @default.
- W3129603666 hasLocation W31296036661 @default.
- W3129603666 hasLocation W31296036662 @default.
- W3129603666 hasOpenAccess W3129603666 @default.
- W3129603666 hasPrimaryLocation W31296036661 @default.
- W3129603666 hasRelatedWork W2086889680 @default.
- W3129603666 hasRelatedWork W2119349310 @default.
- W3129603666 hasRelatedWork W2995276271 @default.
- W3129603666 hasRelatedWork W2997511728 @default.
- W3129603666 hasRelatedWork W3153505674 @default.
- W3129603666 hasRelatedWork W3168126470 @default.
- W3129603666 hasRelatedWork W4246466849 @default.
- W3129603666 hasRelatedWork W4312478656 @default.
- W3129603666 hasRelatedWork W4381745996 @default.
- W3129603666 hasRelatedWork W3107178186 @default.
- W3129603666 hasVolume "10" @default.
- W3129603666 isParatext "false" @default.
- W3129603666 isRetracted "false" @default.
- W3129603666 magId "3129603666" @default.
- W3129603666 workType "article" @default.