Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129786240> ?p ?o ?g. }
- W3129786240 abstract "In natural language processing tasks, data is very important, but data collection is not cheap. Large volume data can well serve a series of tasks, especially for deep learning tasks. Data augmentation methods are solutions to data problems, which can work well on rising data quality and quantity, such as generating text without meaning changing and expanding the diversity of data distribution. A user-friendly method of the data augmentation is to sample words in a text then augmenting them. The sampling method is often implemented by a random probability. Although the performance of this solution has been proved over the past few years, random sampling is not the best choice for the data augmentation as it has a chance of randomly introducing some noise into initial data, like stop words. The generated data could interfere with the subsequent tasks and drop the accuracy of the tasks' solutions. Hence, this paper aims to introduce a novel data augmentation method that could avoid involving such noisy data. The strategy is keywords-oriented data augmentation for Chinese (KDA). The KDA proposed in this paper indicates a method of extracting keywords based on category labels, and an augmenting method based on the keywords. In contrast to randomness, the proposed technique firstly selects the key information data, then expands the selected data. The experimental section is compared with another two typical data augmentation techniques on three Chinese data sets for text classification tasks. The result shows that the KDA technique has a better performance in the data augmentation task than the compared two." @default.
- W3129786240 created "2021-03-01" @default.
- W3129786240 creator A5021761370 @default.
- W3129786240 creator A5046597133 @default.
- W3129786240 creator A5055103025 @default.
- W3129786240 creator A5060255914 @default.
- W3129786240 creator A5065827089 @default.
- W3129786240 creator A5080444518 @default.
- W3129786240 creator A5081342676 @default.
- W3129786240 date "2020-12-11" @default.
- W3129786240 modified "2023-10-03" @default.
- W3129786240 title "Keywords-oriented Data Augmentation for Chinese" @default.
- W3129786240 cites W1423339008 @default.
- W3129786240 cites W1525595230 @default.
- W3129786240 cites W1721182246 @default.
- W3129786240 cites W1970531475 @default.
- W3129786240 cites W2015469910 @default.
- W3129786240 cites W2061118645 @default.
- W3129786240 cites W2064418625 @default.
- W3129786240 cites W2081580037 @default.
- W3129786240 cites W2097277954 @default.
- W3129786240 cites W2130428585 @default.
- W3129786240 cites W2130942839 @default.
- W3129786240 cites W2133286915 @default.
- W3129786240 cites W2137488759 @default.
- W3129786240 cites W2141222516 @default.
- W3129786240 cites W2158018156 @default.
- W3129786240 cites W2163605009 @default.
- W3129786240 cites W2240884068 @default.
- W3129786240 cites W2251658415 @default.
- W3129786240 cites W2251939518 @default.
- W3129786240 cites W2407080277 @default.
- W3129786240 cites W2574002645 @default.
- W3129786240 cites W2605402628 @default.
- W3129786240 cites W2631744962 @default.
- W3129786240 cites W2892131163 @default.
- W3129786240 cites W2946411231 @default.
- W3129786240 cites W2949952998 @default.
- W3129786240 cites W2950577311 @default.
- W3129786240 cites W2963443335 @default.
- W3129786240 cites W2963545917 @default.
- W3129786240 cites W2971296908 @default.
- W3129786240 doi "https://doi.org/10.1109/iccc51575.2020.9345133" @default.
- W3129786240 hasPublicationYear "2020" @default.
- W3129786240 type Work @default.
- W3129786240 sameAs 3129786240 @default.
- W3129786240 citedByCount "1" @default.
- W3129786240 crossrefType "proceedings-article" @default.
- W3129786240 hasAuthorship W3129786240A5021761370 @default.
- W3129786240 hasAuthorship W3129786240A5046597133 @default.
- W3129786240 hasAuthorship W3129786240A5055103025 @default.
- W3129786240 hasAuthorship W3129786240A5060255914 @default.
- W3129786240 hasAuthorship W3129786240A5065827089 @default.
- W3129786240 hasAuthorship W3129786240A5080444518 @default.
- W3129786240 hasAuthorship W3129786240A5081342676 @default.
- W3129786240 hasConcept C105795698 @default.
- W3129786240 hasConcept C115961682 @default.
- W3129786240 hasConcept C119857082 @default.
- W3129786240 hasConcept C124101348 @default.
- W3129786240 hasConcept C125112378 @default.
- W3129786240 hasConcept C133462117 @default.
- W3129786240 hasConcept C140779682 @default.
- W3129786240 hasConcept C154945302 @default.
- W3129786240 hasConcept C162324750 @default.
- W3129786240 hasConcept C176217482 @default.
- W3129786240 hasConcept C187736073 @default.
- W3129786240 hasConcept C21547014 @default.
- W3129786240 hasConcept C24756922 @default.
- W3129786240 hasConcept C2780451532 @default.
- W3129786240 hasConcept C33923547 @default.
- W3129786240 hasConcept C41008148 @default.
- W3129786240 hasConcept C76155785 @default.
- W3129786240 hasConcept C94915269 @default.
- W3129786240 hasConcept C99498987 @default.
- W3129786240 hasConceptScore W3129786240C105795698 @default.
- W3129786240 hasConceptScore W3129786240C115961682 @default.
- W3129786240 hasConceptScore W3129786240C119857082 @default.
- W3129786240 hasConceptScore W3129786240C124101348 @default.
- W3129786240 hasConceptScore W3129786240C125112378 @default.
- W3129786240 hasConceptScore W3129786240C133462117 @default.
- W3129786240 hasConceptScore W3129786240C140779682 @default.
- W3129786240 hasConceptScore W3129786240C154945302 @default.
- W3129786240 hasConceptScore W3129786240C162324750 @default.
- W3129786240 hasConceptScore W3129786240C176217482 @default.
- W3129786240 hasConceptScore W3129786240C187736073 @default.
- W3129786240 hasConceptScore W3129786240C21547014 @default.
- W3129786240 hasConceptScore W3129786240C24756922 @default.
- W3129786240 hasConceptScore W3129786240C2780451532 @default.
- W3129786240 hasConceptScore W3129786240C33923547 @default.
- W3129786240 hasConceptScore W3129786240C41008148 @default.
- W3129786240 hasConceptScore W3129786240C76155785 @default.
- W3129786240 hasConceptScore W3129786240C94915269 @default.
- W3129786240 hasConceptScore W3129786240C99498987 @default.
- W3129786240 hasLocation W31297862401 @default.
- W3129786240 hasOpenAccess W3129786240 @default.
- W3129786240 hasPrimaryLocation W31297862401 @default.
- W3129786240 hasRelatedWork W110019181 @default.
- W3129786240 hasRelatedWork W2039512882 @default.
- W3129786240 hasRelatedWork W2091147802 @default.
- W3129786240 hasRelatedWork W2294997440 @default.