Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129825306> ?p ?o ?g. }
- W3129825306 endingPage "16553" @default.
- W3129825306 startingPage "16531" @default.
- W3129825306 abstract "Abstract. Although air quality in the United States has improved remarkably in the past decades, ground-level ozone (O3) often rises in exceedance of the national ambient air quality standard in nonattainment areas, including the Long Island Sound (LIS) and its surrounding areas. Accurate prediction of high-ozone episodes is needed to assist government agencies and the public in mitigating harmful effects of air pollution. In this study, we have developed a suite of potential forecast improvements, including dynamic boundary conditions, rapid emission refresh and chemical data assimilation, in a 3 km resolution Community Multiscale Air Quality (CMAQ) modeling system. The purpose is to evaluate and assess the effectiveness of these forecasting techniques, individually or in combination, in improving forecast guidance for two major air pollutants: surface O3 and nitrogen dioxide (NO2). Experiments were conducted for a high-O3 episode (28–29 August 2018) during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign, which provides abundant observations for evaluating model performance. The results show that these forecast system updates are useful in enhancing the capability of this 3 km forecasting model with varying effectiveness for different pollutants. For O3 prediction, the most significant improvement comes from the dynamic boundary conditions derived from the NOAA operational forecast system, National Air Quality Forecast Capability (NAQFC), which increases the correlation coefficient (R) from 0.81 to 0.93 and reduces the root mean square error (RMSE) from 14.97 to 8.22 ppbv, compared to that with the static boundary conditions (BCs). The NO2 from all high-resolution simulations outperforms that from the operational 12 km NAQFC simulation, regardless of the BCs used, highlighting the importance of spatially resolved emission and meteorology inputs for the prediction of short-lived pollutants. The effectiveness of improved initial concentrations through optimal interpolation (OI) is shown to be high in urban areas with high emission density. The influence of OI adjustment, however, is maintained for a longer period in rural areas, where emissions and chemical transformation make a smaller contribution to the O3 budget than that in high-emission areas. Following the assessment of individual updates, the forecasting system is configured with dynamic boundary conditions, optimal interpolation of initial concentrations and emission adjustment, to simulate a high-ozone episode during the 2018 LISTOS field campaign. The newly developed forecasting system significantly reduces the bias of surface NO2 prediction. When compared with the NASA Langley GeoCAPE Airborne Simulator (GCAS) vertical column density (VCD), this system is able to reproduce the NO2 VCD with a higher correlation (0.74), lower normalized mean bias (40 %) and normalized mean error (61 %) than NAQFC (0.57, 45 % and 76 %, respectively). The 3 km system captures magnitude and timing of surface O3 peaks and valleys better. In comparison with lidar, O3 profile variability of the vertical O3 is captured better by the new system (correlation coefficient of 0.71) than by NAQFC (correlation coefficient of 0.54). Although the experiments are limited to one pollution episode over the Long Island Sound, this study demonstrates feasible approaches to improve the predictability of high-O3 episodes in contemporary urban environments." @default.
- W3129825306 created "2021-03-01" @default.
- W3129825306 creator A5007347625 @default.
- W3129825306 creator A5012046085 @default.
- W3129825306 creator A5017714799 @default.
- W3129825306 creator A5022124505 @default.
- W3129825306 creator A5024305824 @default.
- W3129825306 creator A5028490217 @default.
- W3129825306 creator A5030508979 @default.
- W3129825306 creator A5031531827 @default.
- W3129825306 creator A5042983625 @default.
- W3129825306 creator A5056455459 @default.
- W3129825306 creator A5060951975 @default.
- W3129825306 creator A5069590640 @default.
- W3129825306 creator A5071436681 @default.
- W3129825306 creator A5076961255 @default.
- W3129825306 creator A5081644087 @default.
- W3129825306 creator A5049113852 @default.
- W3129825306 date "2021-11-11" @default.
- W3129825306 modified "2023-10-17" @default.
- W3129825306 title "Improving predictability of high-ozone episodes through dynamic boundary conditions, emission refresh and chemical data assimilation during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign" @default.
- W3129825306 cites W118963559 @default.
- W3129825306 cites W1500371118 @default.
- W3129825306 cites W1616087035 @default.
- W3129825306 cites W1897875932 @default.
- W3129825306 cites W1904528511 @default.
- W3129825306 cites W1914607329 @default.
- W3129825306 cites W1967223634 @default.
- W3129825306 cites W1971090280 @default.
- W3129825306 cites W1980865383 @default.
- W3129825306 cites W1985479415 @default.
- W3129825306 cites W1986302701 @default.
- W3129825306 cites W1992739954 @default.
- W3129825306 cites W1993599733 @default.
- W3129825306 cites W2000664327 @default.
- W3129825306 cites W2007170483 @default.
- W3129825306 cites W2008641894 @default.
- W3129825306 cites W2017585618 @default.
- W3129825306 cites W2019273358 @default.
- W3129825306 cites W2025537208 @default.
- W3129825306 cites W2027119081 @default.
- W3129825306 cites W2039213325 @default.
- W3129825306 cites W2051008536 @default.
- W3129825306 cites W2052594184 @default.
- W3129825306 cites W2053140413 @default.
- W3129825306 cites W2054626470 @default.
- W3129825306 cites W2071783577 @default.
- W3129825306 cites W2077059360 @default.
- W3129825306 cites W2084785797 @default.
- W3129825306 cites W2099125974 @default.
- W3129825306 cites W2113827433 @default.
- W3129825306 cites W2122607663 @default.
- W3129825306 cites W2122804368 @default.
- W3129825306 cites W2124443761 @default.
- W3129825306 cites W2128738304 @default.
- W3129825306 cites W2130050908 @default.
- W3129825306 cites W2131226867 @default.
- W3129825306 cites W2146009258 @default.
- W3129825306 cites W2147169375 @default.
- W3129825306 cites W2148311883 @default.
- W3129825306 cites W2148822217 @default.
- W3129825306 cites W2155829461 @default.
- W3129825306 cites W2158822760 @default.
- W3129825306 cites W2166974051 @default.
- W3129825306 cites W2175094568 @default.
- W3129825306 cites W2181710572 @default.
- W3129825306 cites W2319404411 @default.
- W3129825306 cites W2461312929 @default.
- W3129825306 cites W2471279947 @default.
- W3129825306 cites W2476889144 @default.
- W3129825306 cites W2561018360 @default.
- W3129825306 cites W2569143395 @default.
- W3129825306 cites W2574373265 @default.
- W3129825306 cites W2611935273 @default.
- W3129825306 cites W2778350156 @default.
- W3129825306 cites W2785649357 @default.
- W3129825306 cites W2826490997 @default.
- W3129825306 cites W2890116680 @default.
- W3129825306 cites W2891300249 @default.
- W3129825306 cites W2905355243 @default.
- W3129825306 cites W2915636709 @default.
- W3129825306 cites W2916847768 @default.
- W3129825306 cites W2954441703 @default.
- W3129825306 cites W2968603026 @default.
- W3129825306 cites W2973044796 @default.
- W3129825306 cites W2981481684 @default.
- W3129825306 cites W2995053705 @default.
- W3129825306 cites W3017404467 @default.
- W3129825306 cites W3034017249 @default.
- W3129825306 cites W3121652428 @default.
- W3129825306 cites W3128982110 @default.
- W3129825306 doi "https://doi.org/10.5194/acp-21-16531-2021" @default.
- W3129825306 hasPublicationYear "2021" @default.
- W3129825306 type Work @default.
- W3129825306 sameAs 3129825306 @default.
- W3129825306 citedByCount "5" @default.
- W3129825306 countsByYear W31298253062022 @default.
- W3129825306 countsByYear W31298253062023 @default.