Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129910933> ?p ?o ?g. }
- W3129910933 abstract "To determine whether machine learning based on conventional magnetic resonance imaging (MRI) sequences have the potential for the differential diagnosis of multiple myeloma (MM), and different tumor metastasis lesions of the lumbar vertebra.We retrospectively enrolled 107 patients newly diagnosed with MM and different metastasis of the lumbar vertebra. In total 60 MM lesions and 118 metastasis lesions were selected for training classifiers (70%) and subsequent validation (30%). Following segmentation, 282 texture features were extracted from both T1WI and T2WI images. Following regression analysis using the least absolute shrinkage and selection operator (LASSO) algorithm, the following machine learning models were selected: Support-Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Artificial Neural Networks (ANN), and Naïve Bayes (NB) using 10-fold cross validation, and the performances were evaluated using a confusion matrix. Matthews correlation coefficient (MCC), sensitivity, specificity, and accuracy of the models were also calculated.To differentiate MM and metastasis, 13 features in the T1WI images and 9 features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.605) with accuracy, sensitivity, and specificity of 0.815, 0.879, and 0.790, respectively, in the validation cohort. To differentiate MM and metastasis subtypes, eight features in the T1WI images and seven features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier from the T2WI images achieved the best performance (MCC = 0.560, 0.412, 0.449), respectively, with accuracy = 0.648; sensitivity 0.714, 0.821, 0.897 and specificity 0.775, 0.600, 0.640 for the MM, lung, and other metastases, respectively, in the validation cohort.Machine learning-based classifiers showed a satisfactory performance in differentiating MM lesions from those of tumor metastasis. While their value for distinguishing myeloma from different metastasis subtypes was moderate." @default.
- W3129910933 created "2021-03-01" @default.
- W3129910933 creator A5006351471 @default.
- W3129910933 creator A5012492614 @default.
- W3129910933 creator A5029974545 @default.
- W3129910933 creator A5054352845 @default.
- W3129910933 creator A5061354566 @default.
- W3129910933 creator A5071773009 @default.
- W3129910933 date "2021-02-24" @default.
- W3129910933 modified "2023-10-16" @default.
- W3129910933 title "Differentiating Between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning–Based Radiomics" @default.
- W3129910933 cites W1971453924 @default.
- W3129910933 cites W1988301066 @default.
- W3129910933 cites W1995426751 @default.
- W3129910933 cites W2049998096 @default.
- W3129910933 cites W2113998974 @default.
- W3129910933 cites W2116182875 @default.
- W3129910933 cites W2128739912 @default.
- W3129910933 cites W2144728882 @default.
- W3129910933 cites W2147821156 @default.
- W3129910933 cites W2154373636 @default.
- W3129910933 cites W2337994566 @default.
- W3129910933 cites W2346343836 @default.
- W3129910933 cites W2493714412 @default.
- W3129910933 cites W2507264029 @default.
- W3129910933 cites W2549396793 @default.
- W3129910933 cites W2584665345 @default.
- W3129910933 cites W2667615174 @default.
- W3129910933 cites W2731334040 @default.
- W3129910933 cites W2747294052 @default.
- W3129910933 cites W2754280534 @default.
- W3129910933 cites W2755496220 @default.
- W3129910933 cites W2792491607 @default.
- W3129910933 cites W2803679599 @default.
- W3129910933 cites W2810708734 @default.
- W3129910933 cites W2885928324 @default.
- W3129910933 cites W2894618376 @default.
- W3129910933 cites W2903376111 @default.
- W3129910933 cites W2904276549 @default.
- W3129910933 cites W2906407017 @default.
- W3129910933 cites W2909044173 @default.
- W3129910933 cites W2912199138 @default.
- W3129910933 cites W2913323708 @default.
- W3129910933 cites W2915609971 @default.
- W3129910933 cites W2919624876 @default.
- W3129910933 cites W2949153672 @default.
- W3129910933 cites W2961575612 @default.
- W3129910933 cites W2966601466 @default.
- W3129910933 cites W2990577320 @default.
- W3129910933 cites W3013282702 @default.
- W3129910933 cites W3021611673 @default.
- W3129910933 cites W3109355481 @default.
- W3129910933 doi "https://doi.org/10.3389/fonc.2021.601699" @default.
- W3129910933 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7943866" @default.
- W3129910933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33718148" @default.
- W3129910933 hasPublicationYear "2021" @default.
- W3129910933 type Work @default.
- W3129910933 sameAs 3129910933 @default.
- W3129910933 citedByCount "20" @default.
- W3129910933 countsByYear W31299109332021 @default.
- W3129910933 countsByYear W31299109332022 @default.
- W3129910933 countsByYear W31299109332023 @default.
- W3129910933 crossrefType "journal-article" @default.
- W3129910933 hasAuthorship W3129910933A5006351471 @default.
- W3129910933 hasAuthorship W3129910933A5012492614 @default.
- W3129910933 hasAuthorship W3129910933A5029974545 @default.
- W3129910933 hasAuthorship W3129910933A5054352845 @default.
- W3129910933 hasAuthorship W3129910933A5061354566 @default.
- W3129910933 hasAuthorship W3129910933A5071773009 @default.
- W3129910933 hasBestOaLocation W31299109331 @default.
- W3129910933 hasConcept C119857082 @default.
- W3129910933 hasConcept C121608353 @default.
- W3129910933 hasConcept C12267149 @default.
- W3129910933 hasConcept C126322002 @default.
- W3129910933 hasConcept C126838900 @default.
- W3129910933 hasConcept C143409427 @default.
- W3129910933 hasConcept C148483581 @default.
- W3129910933 hasConcept C153180895 @default.
- W3129910933 hasConcept C154945302 @default.
- W3129910933 hasConcept C169258074 @default.
- W3129910933 hasConcept C27181475 @default.
- W3129910933 hasConcept C2778559731 @default.
- W3129910933 hasConcept C2779013556 @default.
- W3129910933 hasConcept C41008148 @default.
- W3129910933 hasConcept C52001869 @default.
- W3129910933 hasConcept C71924100 @default.
- W3129910933 hasConceptScore W3129910933C119857082 @default.
- W3129910933 hasConceptScore W3129910933C121608353 @default.
- W3129910933 hasConceptScore W3129910933C12267149 @default.
- W3129910933 hasConceptScore W3129910933C126322002 @default.
- W3129910933 hasConceptScore W3129910933C126838900 @default.
- W3129910933 hasConceptScore W3129910933C143409427 @default.
- W3129910933 hasConceptScore W3129910933C148483581 @default.
- W3129910933 hasConceptScore W3129910933C153180895 @default.
- W3129910933 hasConceptScore W3129910933C154945302 @default.
- W3129910933 hasConceptScore W3129910933C169258074 @default.
- W3129910933 hasConceptScore W3129910933C27181475 @default.
- W3129910933 hasConceptScore W3129910933C2778559731 @default.
- W3129910933 hasConceptScore W3129910933C2779013556 @default.
- W3129910933 hasConceptScore W3129910933C41008148 @default.