Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129939373> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3129939373 abstract "Abstract It is essential to know the process efficiency in the industrial magnetic separation process under different operating conditions because it is required to control the process parameters to optimize the process efficiency. To our knowledge, there is no information about using artificial intelligence for modeling the magnetic separation process. Hence, finding a robust and more accurate estimation method for predicting the separation efficiency and selectivity index is still necessary. In this regard, a feed-forward neural network was developed to predict the separation efficiency and selectivity index. This model was trained to present a predictive model based on the percentage of iron, iron oxide and sulfur in mill feed and cobber feed, 80% passing size in mill feed and cobber feed and plant capacity. Therefore, this work aims to develop an intelligent technique based on an artificial neural network and a hybrid neural-genetic algorithm for modeling the concentration process. Results indicated that the values of mean square error and coefficient of determination for the testing phase were obtained 0.635 and 0.86 for selectivity index and of 4.646 and 0.84 for separation efficiency, respectively. In order to improve the performance of neural network, genetic algorithm was used to optimize the weights and biases of neural network. The results of modeling with GA-ANN technique indicated that the mean square error and coefficient of determination for the testing phase were achieved by 0.276 and 0.95 for selectivity index and of 1.782 and 0.92 for separation efficiency, respectively. The other statistical criteria for the GA-ANN model were better than those of the ANN model." @default.
- W3129939373 created "2021-03-01" @default.
- W3129939373 creator A5001785021 @default.
- W3129939373 creator A5008648371 @default.
- W3129939373 creator A5064144197 @default.
- W3129939373 creator A5080765237 @default.
- W3129939373 date "2021-02-19" @default.
- W3129939373 modified "2023-09-27" @default.
- W3129939373 title "Selectivity index and separation efficiency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm" @default.
- W3129939373 cites W1994020060 @default.
- W3129939373 cites W2003301653 @default.
- W3129939373 cites W2009766388 @default.
- W3129939373 cites W2045091106 @default.
- W3129939373 cites W2045991117 @default.
- W3129939373 cites W2051770132 @default.
- W3129939373 cites W2079143456 @default.
- W3129939373 cites W2089916172 @default.
- W3129939373 cites W2090922074 @default.
- W3129939373 cites W2165970880 @default.
- W3129939373 cites W2505221900 @default.
- W3129939373 cites W2509426396 @default.
- W3129939373 cites W2590220668 @default.
- W3129939373 cites W2619176874 @default.
- W3129939373 cites W3031482554 @default.
- W3129939373 cites W3087150372 @default.
- W3129939373 cites W3089978623 @default.
- W3129939373 cites W4238620223 @default.
- W3129939373 doi "https://doi.org/10.1007/s42452-021-04361-6" @default.
- W3129939373 hasPublicationYear "2021" @default.
- W3129939373 type Work @default.
- W3129939373 sameAs 3129939373 @default.
- W3129939373 citedByCount "6" @default.
- W3129939373 countsByYear W31299393732021 @default.
- W3129939373 countsByYear W31299393732022 @default.
- W3129939373 crossrefType "journal-article" @default.
- W3129939373 hasAuthorship W3129939373A5001785021 @default.
- W3129939373 hasAuthorship W3129939373A5008648371 @default.
- W3129939373 hasAuthorship W3129939373A5064144197 @default.
- W3129939373 hasAuthorship W3129939373A5080765237 @default.
- W3129939373 hasBestOaLocation W31299393731 @default.
- W3129939373 hasConcept C105795698 @default.
- W3129939373 hasConcept C111919701 @default.
- W3129939373 hasConcept C11413529 @default.
- W3129939373 hasConcept C119857082 @default.
- W3129939373 hasConcept C139945424 @default.
- W3129939373 hasConcept C154945302 @default.
- W3129939373 hasConcept C185592680 @default.
- W3129939373 hasConcept C2776061190 @default.
- W3129939373 hasConcept C2780232233 @default.
- W3129939373 hasConcept C33923547 @default.
- W3129939373 hasConcept C41008148 @default.
- W3129939373 hasConcept C43617362 @default.
- W3129939373 hasConcept C50644808 @default.
- W3129939373 hasConcept C8880873 @default.
- W3129939373 hasConcept C98045186 @default.
- W3129939373 hasConceptScore W3129939373C105795698 @default.
- W3129939373 hasConceptScore W3129939373C111919701 @default.
- W3129939373 hasConceptScore W3129939373C11413529 @default.
- W3129939373 hasConceptScore W3129939373C119857082 @default.
- W3129939373 hasConceptScore W3129939373C139945424 @default.
- W3129939373 hasConceptScore W3129939373C154945302 @default.
- W3129939373 hasConceptScore W3129939373C185592680 @default.
- W3129939373 hasConceptScore W3129939373C2776061190 @default.
- W3129939373 hasConceptScore W3129939373C2780232233 @default.
- W3129939373 hasConceptScore W3129939373C33923547 @default.
- W3129939373 hasConceptScore W3129939373C41008148 @default.
- W3129939373 hasConceptScore W3129939373C43617362 @default.
- W3129939373 hasConceptScore W3129939373C50644808 @default.
- W3129939373 hasConceptScore W3129939373C8880873 @default.
- W3129939373 hasConceptScore W3129939373C98045186 @default.
- W3129939373 hasIssue "3" @default.
- W3129939373 hasLocation W31299393731 @default.
- W3129939373 hasOpenAccess W3129939373 @default.
- W3129939373 hasPrimaryLocation W31299393731 @default.
- W3129939373 hasRelatedWork W2356957943 @default.
- W3129939373 hasRelatedWork W2359549665 @default.
- W3129939373 hasRelatedWork W2382761789 @default.
- W3129939373 hasRelatedWork W2386058197 @default.
- W3129939373 hasRelatedWork W2387399673 @default.
- W3129939373 hasRelatedWork W2392110728 @default.
- W3129939373 hasRelatedWork W2808471159 @default.
- W3129939373 hasRelatedWork W3195272954 @default.
- W3129939373 hasRelatedWork W4238036087 @default.
- W3129939373 hasRelatedWork W4281693556 @default.
- W3129939373 hasVolume "3" @default.
- W3129939373 isParatext "false" @default.
- W3129939373 isRetracted "false" @default.
- W3129939373 magId "3129939373" @default.
- W3129939373 workType "article" @default.