Matches in SemOpenAlex for { <https://semopenalex.org/work/W3129957260> ?p ?o ?g. }
- W3129957260 endingPage "103690" @default.
- W3129957260 startingPage "103690" @default.
- W3129957260 abstract "The inherent high background radiation and low contrast of infrared images severely cripple the precision of target detection and recognition. However, existing infrared image enhancement methods still struggle to balance the target enhancement and background suppression. To further address this issue, we present an innovative target attention deep neural network (TADNN) to realize a discriminative enhancement in an end-to-end manner. In this framework, a joint convolution unit (JCU) is constructed to comprehensively excavate the complementary multi-scale spatial features, followed that, a target attention unit (TAU) is designed to further refine the features from JCU for particularly enhancing the targets. Besides, an improved S-curve response model is put forward to generate the task-oriented training set for pursuing a superior fitting solution. Extensive experiments validate that the proposed method outperforms the competitive approaches on both of subjective visual effect and quantitative assessments." @default.
- W3129957260 created "2021-03-01" @default.
- W3129957260 creator A5041599593 @default.
- W3129957260 creator A5046454314 @default.
- W3129957260 creator A5051316537 @default.
- W3129957260 date "2021-06-01" @default.
- W3129957260 modified "2023-10-17" @default.
- W3129957260 title "Target attention deep neural network for infrared image enhancement" @default.
- W3129957260 cites W2010806312 @default.
- W3129957260 cites W2044734552 @default.
- W3129957260 cites W2054762883 @default.
- W3129957260 cites W2058333183 @default.
- W3129957260 cites W2074392034 @default.
- W3129957260 cites W2116973876 @default.
- W3129957260 cites W2125732958 @default.
- W3129957260 cites W2133665775 @default.
- W3129957260 cites W2150721269 @default.
- W3129957260 cites W2254039850 @default.
- W3129957260 cites W2338507060 @default.
- W3129957260 cites W2745857354 @default.
- W3129957260 cites W2766497195 @default.
- W3129957260 cites W2767188972 @default.
- W3129957260 cites W2769277030 @default.
- W3129957260 cites W2791071401 @default.
- W3129957260 cites W2802408754 @default.
- W3129957260 cites W2884675507 @default.
- W3129957260 cites W2891150856 @default.
- W3129957260 cites W2894660140 @default.
- W3129957260 cites W2904195252 @default.
- W3129957260 cites W2908218113 @default.
- W3129957260 cites W2911671827 @default.
- W3129957260 cites W2912076993 @default.
- W3129957260 cites W2919893652 @default.
- W3129957260 cites W2927781031 @default.
- W3129957260 cites W2929906481 @default.
- W3129957260 cites W2936073395 @default.
- W3129957260 cites W2943995207 @default.
- W3129957260 cites W2955507409 @default.
- W3129957260 cites W2964076515 @default.
- W3129957260 cites W2967552390 @default.
- W3129957260 cites W2967626144 @default.
- W3129957260 cites W2972014750 @default.
- W3129957260 cites W2979018951 @default.
- W3129957260 cites W2981778699 @default.
- W3129957260 cites W2991642850 @default.
- W3129957260 cites W3000933965 @default.
- W3129957260 cites W3007719613 @default.
- W3129957260 cites W3010819965 @default.
- W3129957260 cites W3104849992 @default.
- W3129957260 doi "https://doi.org/10.1016/j.infrared.2021.103690" @default.
- W3129957260 hasPublicationYear "2021" @default.
- W3129957260 type Work @default.
- W3129957260 sameAs 3129957260 @default.
- W3129957260 citedByCount "6" @default.
- W3129957260 countsByYear W31299572602021 @default.
- W3129957260 countsByYear W31299572602022 @default.
- W3129957260 countsByYear W31299572602023 @default.
- W3129957260 crossrefType "journal-article" @default.
- W3129957260 hasAuthorship W3129957260A5041599593 @default.
- W3129957260 hasAuthorship W3129957260A5046454314 @default.
- W3129957260 hasAuthorship W3129957260A5051316537 @default.
- W3129957260 hasConcept C115961682 @default.
- W3129957260 hasConcept C121332964 @default.
- W3129957260 hasConcept C153180895 @default.
- W3129957260 hasConcept C154945302 @default.
- W3129957260 hasConcept C162324750 @default.
- W3129957260 hasConcept C177264268 @default.
- W3129957260 hasConcept C187736073 @default.
- W3129957260 hasConcept C199360897 @default.
- W3129957260 hasConcept C2778755073 @default.
- W3129957260 hasConcept C2780451532 @default.
- W3129957260 hasConcept C41008148 @default.
- W3129957260 hasConcept C45347329 @default.
- W3129957260 hasConcept C50644808 @default.
- W3129957260 hasConcept C62520636 @default.
- W3129957260 hasConcept C81363708 @default.
- W3129957260 hasConcept C97931131 @default.
- W3129957260 hasConceptScore W3129957260C115961682 @default.
- W3129957260 hasConceptScore W3129957260C121332964 @default.
- W3129957260 hasConceptScore W3129957260C153180895 @default.
- W3129957260 hasConceptScore W3129957260C154945302 @default.
- W3129957260 hasConceptScore W3129957260C162324750 @default.
- W3129957260 hasConceptScore W3129957260C177264268 @default.
- W3129957260 hasConceptScore W3129957260C187736073 @default.
- W3129957260 hasConceptScore W3129957260C199360897 @default.
- W3129957260 hasConceptScore W3129957260C2778755073 @default.
- W3129957260 hasConceptScore W3129957260C2780451532 @default.
- W3129957260 hasConceptScore W3129957260C41008148 @default.
- W3129957260 hasConceptScore W3129957260C45347329 @default.
- W3129957260 hasConceptScore W3129957260C50644808 @default.
- W3129957260 hasConceptScore W3129957260C62520636 @default.
- W3129957260 hasConceptScore W3129957260C81363708 @default.
- W3129957260 hasConceptScore W3129957260C97931131 @default.
- W3129957260 hasLocation W31299572601 @default.
- W3129957260 hasOpenAccess W3129957260 @default.
- W3129957260 hasPrimaryLocation W31299572601 @default.
- W3129957260 hasRelatedWork W1972656095 @default.
- W3129957260 hasRelatedWork W2024160000 @default.