Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130015284> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3130015284 endingPage "84" @default.
- W3130015284 startingPage "84" @default.
- W3130015284 abstract "The field of natural language processing (NLP) has witnessed a boom in language representation models with the introduction of pretrained language models that are trained on massive textual data then used to fine-tune downstream NLP tasks. In this paper, we aim to study the evolution of language representation models by analyzing their effect on an under-researched NLP task: emotion analysis; for a low-resource language: Arabic. Most of the studies in the field of affect analysis focused on sentiment analysis, i.e., classifying text into valence (positive, negative, neutral) while few studies go further to analyze the finer grained emotional states (happiness, sadness, anger, etc.). Emotion analysis is a text classification problem that is tackled using machine learning techniques. Different language representation models have been used as features for these machine learning models to learn from. In this paper, we perform an empirical study on the evolution of language models, from the traditional term frequency–inverse document frequency (TF–IDF) to the more sophisticated word embedding word2vec, and finally the recent state-of-the-art pretrained language model, bidirectional encoder representations from transformers (BERT). We observe and analyze how the performance increases as we change the language model. We also investigate different BERT models for Arabic. We find that the best performance is achieved with the ArabicBERT large model, which is a BERT model trained on a large dataset of Arabic text. The increase in F1-score was significant +7–21%." @default.
- W3130015284 created "2021-03-01" @default.
- W3130015284 creator A5027267621 @default.
- W3130015284 date "2021-02-17" @default.
- W3130015284 modified "2023-10-05" @default.
- W3130015284 title "The Evolution of Language Models Applied to Emotion Analysis of Arabic Tweets" @default.
- W3130015284 cites W1966797434 @default.
- W3130015284 cites W2064230935 @default.
- W3130015284 cites W2117808614 @default.
- W3130015284 cites W2306941105 @default.
- W3130015284 cites W2493916176 @default.
- W3130015284 cites W2767784948 @default.
- W3130015284 cites W2921907837 @default.
- W3130015284 cites W2932079797 @default.
- W3130015284 cites W3009902384 @default.
- W3130015284 cites W3011574394 @default.
- W3130015284 cites W3047189009 @default.
- W3130015284 doi "https://doi.org/10.3390/info12020084" @default.
- W3130015284 hasPublicationYear "2021" @default.
- W3130015284 type Work @default.
- W3130015284 sameAs 3130015284 @default.
- W3130015284 citedByCount "16" @default.
- W3130015284 countsByYear W31300152842021 @default.
- W3130015284 countsByYear W31300152842022 @default.
- W3130015284 countsByYear W31300152842023 @default.
- W3130015284 crossrefType "journal-article" @default.
- W3130015284 hasAuthorship W3130015284A5027267621 @default.
- W3130015284 hasBestOaLocation W31300152841 @default.
- W3130015284 hasConcept C118552586 @default.
- W3130015284 hasConcept C121332964 @default.
- W3130015284 hasConcept C137293760 @default.
- W3130015284 hasConcept C154945302 @default.
- W3130015284 hasConcept C15744967 @default.
- W3130015284 hasConcept C165801399 @default.
- W3130015284 hasConcept C204321447 @default.
- W3130015284 hasConcept C2776461190 @default.
- W3130015284 hasConcept C2779302386 @default.
- W3130015284 hasConcept C2779812673 @default.
- W3130015284 hasConcept C41008148 @default.
- W3130015284 hasConcept C41608201 @default.
- W3130015284 hasConcept C62520636 @default.
- W3130015284 hasConcept C66322947 @default.
- W3130015284 hasConcept C66402592 @default.
- W3130015284 hasConceptScore W3130015284C118552586 @default.
- W3130015284 hasConceptScore W3130015284C121332964 @default.
- W3130015284 hasConceptScore W3130015284C137293760 @default.
- W3130015284 hasConceptScore W3130015284C154945302 @default.
- W3130015284 hasConceptScore W3130015284C15744967 @default.
- W3130015284 hasConceptScore W3130015284C165801399 @default.
- W3130015284 hasConceptScore W3130015284C204321447 @default.
- W3130015284 hasConceptScore W3130015284C2776461190 @default.
- W3130015284 hasConceptScore W3130015284C2779302386 @default.
- W3130015284 hasConceptScore W3130015284C2779812673 @default.
- W3130015284 hasConceptScore W3130015284C41008148 @default.
- W3130015284 hasConceptScore W3130015284C41608201 @default.
- W3130015284 hasConceptScore W3130015284C62520636 @default.
- W3130015284 hasConceptScore W3130015284C66322947 @default.
- W3130015284 hasConceptScore W3130015284C66402592 @default.
- W3130015284 hasFunder F4320335012 @default.
- W3130015284 hasIssue "2" @default.
- W3130015284 hasLocation W31300152841 @default.
- W3130015284 hasOpenAccess W3130015284 @default.
- W3130015284 hasPrimaryLocation W31300152841 @default.
- W3130015284 hasRelatedWork W2566238543 @default.
- W3130015284 hasRelatedWork W2760392765 @default.
- W3130015284 hasRelatedWork W2965885965 @default.
- W3130015284 hasRelatedWork W3080191145 @default.
- W3130015284 hasRelatedWork W3098544760 @default.
- W3130015284 hasRelatedWork W3160991089 @default.
- W3130015284 hasRelatedWork W4205948734 @default.
- W3130015284 hasRelatedWork W4210823838 @default.
- W3130015284 hasRelatedWork W4317564474 @default.
- W3130015284 hasRelatedWork W4378471059 @default.
- W3130015284 hasVolume "12" @default.
- W3130015284 isParatext "false" @default.
- W3130015284 isRetracted "false" @default.
- W3130015284 magId "3130015284" @default.
- W3130015284 workType "article" @default.