Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130043586> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3130043586 endingPage "4" @default.
- W3130043586 startingPage "1" @default.
- W3130043586 abstract "Athlete movement data are integral for optimizing athlete-performance and can lead to reduced fatigue and in turn can mitigate injury risk. There is a substantial amount of scientific literature, which investigates the ability of computer-vision and inertial sensor technologies to classify sport-specific movements. The coupling of automatic sport action labeling and athlete-monitoring data can significantly enhance athlete work-load monitoring. Two recent systematic reviews of the literature, pertinent to sport-specific movement classification, revealed that the majority of journal articles use athlete-dependent classification model training and evaluation methods. These methods can significantly enhance model classification performance, particularly with movements which have high interathlete technique variation. This is because it enables models to learn features distinctive to all athletes during training. This letter details the training and evaluation of supervised machine learning models to automatically classify running surface (athletics track, hard sand, and soft sand) using features extracted from an upper-back inertial measurement unit sensor. Possible classification performance enhancement is demonstrated by comparing athlete independent and athlete dependent supervised machine learning methods. Using athlete dependent methods significantly increased the classification performance in terms of weighted average precision, recall, F1-score, and accuracy (p <; 0.05)." @default.
- W3130043586 created "2021-03-01" @default.
- W3130043586 creator A5012466128 @default.
- W3130043586 creator A5061522977 @default.
- W3130043586 creator A5065352364 @default.
- W3130043586 creator A5080820262 @default.
- W3130043586 date "2021-03-01" @default.
- W3130043586 modified "2023-10-17" @default.
- W3130043586 title "One Size Doesn't Fit All: Supervised Machine Learning Classification in Athlete-Monitoring" @default.
- W3130043586 cites W1990608961 @default.
- W3130043586 cites W2062618081 @default.
- W3130043586 cites W2128728535 @default.
- W3130043586 cites W2134262590 @default.
- W3130043586 cites W2160146756 @default.
- W3130043586 cites W2342249984 @default.
- W3130043586 cites W2526225066 @default.
- W3130043586 cites W2604979907 @default.
- W3130043586 cites W2620961766 @default.
- W3130043586 cites W2621129872 @default.
- W3130043586 cites W2790596393 @default.
- W3130043586 cites W2793667086 @default.
- W3130043586 cites W2808252767 @default.
- W3130043586 cites W2897764506 @default.
- W3130043586 cites W2936610935 @default.
- W3130043586 cites W2944327118 @default.
- W3130043586 cites W2971762798 @default.
- W3130043586 cites W2998376881 @default.
- W3130043586 cites W3090580625 @default.
- W3130043586 cites W3103229042 @default.
- W3130043586 doi "https://doi.org/10.1109/lsens.2021.3060376" @default.
- W3130043586 hasPublicationYear "2021" @default.
- W3130043586 type Work @default.
- W3130043586 sameAs 3130043586 @default.
- W3130043586 citedByCount "4" @default.
- W3130043586 countsByYear W31300435862021 @default.
- W3130043586 countsByYear W31300435862023 @default.
- W3130043586 crossrefType "journal-article" @default.
- W3130043586 hasAuthorship W3130043586A5012466128 @default.
- W3130043586 hasAuthorship W3130043586A5061522977 @default.
- W3130043586 hasAuthorship W3130043586A5065352364 @default.
- W3130043586 hasAuthorship W3130043586A5080820262 @default.
- W3130043586 hasBestOaLocation W31300435862 @default.
- W3130043586 hasConcept C100660578 @default.
- W3130043586 hasConcept C119857082 @default.
- W3130043586 hasConcept C154945302 @default.
- W3130043586 hasConcept C15744967 @default.
- W3130043586 hasConcept C180747234 @default.
- W3130043586 hasConcept C1862650 @default.
- W3130043586 hasConcept C2781054738 @default.
- W3130043586 hasConcept C41008148 @default.
- W3130043586 hasConcept C71924100 @default.
- W3130043586 hasConcept C79061980 @default.
- W3130043586 hasConceptScore W3130043586C100660578 @default.
- W3130043586 hasConceptScore W3130043586C119857082 @default.
- W3130043586 hasConceptScore W3130043586C154945302 @default.
- W3130043586 hasConceptScore W3130043586C15744967 @default.
- W3130043586 hasConceptScore W3130043586C180747234 @default.
- W3130043586 hasConceptScore W3130043586C1862650 @default.
- W3130043586 hasConceptScore W3130043586C2781054738 @default.
- W3130043586 hasConceptScore W3130043586C41008148 @default.
- W3130043586 hasConceptScore W3130043586C71924100 @default.
- W3130043586 hasConceptScore W3130043586C79061980 @default.
- W3130043586 hasIssue "3" @default.
- W3130043586 hasLocation W31300435861 @default.
- W3130043586 hasLocation W31300435862 @default.
- W3130043586 hasOpenAccess W3130043586 @default.
- W3130043586 hasPrimaryLocation W31300435861 @default.
- W3130043586 hasRelatedWork W2961085424 @default.
- W3130043586 hasRelatedWork W3046775127 @default.
- W3130043586 hasRelatedWork W3170094116 @default.
- W3130043586 hasRelatedWork W4205958290 @default.
- W3130043586 hasRelatedWork W4285260836 @default.
- W3130043586 hasRelatedWork W4286629047 @default.
- W3130043586 hasRelatedWork W4306321456 @default.
- W3130043586 hasRelatedWork W4306674287 @default.
- W3130043586 hasRelatedWork W4386462264 @default.
- W3130043586 hasRelatedWork W4224009465 @default.
- W3130043586 hasVolume "5" @default.
- W3130043586 isParatext "false" @default.
- W3130043586 isRetracted "false" @default.
- W3130043586 magId "3130043586" @default.
- W3130043586 workType "article" @default.