Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130142666> ?p ?o ?g. }
- W3130142666 abstract "Background: Anemia is a major public health problem with raising prevalence worldwide, including Bangladesh. Objectives: To identify the risk factors of anemia among women in Bangladesh and its prediction using Machine Learning (ML) based techniques. Methods: The anemia dataset, comprising of 3,020 respondents, was extracted from the Bangladesh Demographic and Health Survey (BDHS). Two feature selection techniques as Logistic Regression (LR) and Random Forest (RF), have been utilized to determine the risk factors of anemia. Additionally, eight ML-based techniques, namely LR, Linear Discriminant Analysis (LDA), K-Nearest Neighborhood (KNN), Support Vector Machine (SVM), Quadratic Discriminant Analysis (QDA), Neural Network (NN), Classification And Regression Tree (CART), and RF have also been utilized to predict anemia disease among women in Bangladesh. Classification accuracy and Area Under the Curve (AUC) are used to evaluate the performances of these classifiers. Results: LR and RF-based feature selection results indicate that out of 15 factors, 13 for LR and 14 factors for RF appear to be significant risk factors for anemia among women. All predictive models provide the highest classification accuracy and AUC of 74.10-81.29% and 0.744-0.819 under RF features. However, the combination of RF-based feature selection along with RF-based classifier gives the highest classification accuracy (81.29%) and AUC (0.819). Conclusion: Out of the eight predictive models, RF-RF based combination model shows the best performance for the prediction of anemia. This study suggests policymakers to make appropriate decisions to control the anemia using RF-RF combination to save time and reduce the cost for Bangladeshi women." @default.
- W3130142666 created "2021-03-01" @default.
- W3130142666 creator A5003502002 @default.
- W3130142666 creator A5007058356 @default.
- W3130142666 creator A5017427960 @default.
- W3130142666 creator A5044571099 @default.
- W3130142666 creator A5051653396 @default.
- W3130142666 creator A5055102508 @default.
- W3130142666 creator A5074779559 @default.
- W3130142666 date "2022-02-01" @default.
- W3130142666 modified "2023-09-24" @default.
- W3130142666 title "Risk Factors Identification and Prediction of Anemia among Women in Bangladesh using Machine Learning Techniques" @default.
- W3130142666 cites W124405788 @default.
- W3130142666 cites W1584935767 @default.
- W3130142666 cites W1863711402 @default.
- W3130142666 cites W1914307777 @default.
- W3130142666 cites W1927985951 @default.
- W3130142666 cites W1968968976 @default.
- W3130142666 cites W1973177500 @default.
- W3130142666 cites W1987981915 @default.
- W3130142666 cites W2010043809 @default.
- W3130142666 cites W2016023958 @default.
- W3130142666 cites W2019290712 @default.
- W3130142666 cites W2025131366 @default.
- W3130142666 cites W2035675177 @default.
- W3130142666 cites W2036274019 @default.
- W3130142666 cites W2055142209 @default.
- W3130142666 cites W2060542593 @default.
- W3130142666 cites W2063768475 @default.
- W3130142666 cites W2064352562 @default.
- W3130142666 cites W2072184377 @default.
- W3130142666 cites W2087476857 @default.
- W3130142666 cites W2088462237 @default.
- W3130142666 cites W2090341258 @default.
- W3130142666 cites W2092192451 @default.
- W3130142666 cites W2118561568 @default.
- W3130142666 cites W2118889138 @default.
- W3130142666 cites W2129000670 @default.
- W3130142666 cites W2131414141 @default.
- W3130142666 cites W2141767690 @default.
- W3130142666 cites W2143517695 @default.
- W3130142666 cites W2146109076 @default.
- W3130142666 cites W2152724914 @default.
- W3130142666 cites W2154053567 @default.
- W3130142666 cites W2155261478 @default.
- W3130142666 cites W2185735639 @default.
- W3130142666 cites W2262581580 @default.
- W3130142666 cites W2328120369 @default.
- W3130142666 cites W2492513888 @default.
- W3130142666 cites W2513386338 @default.
- W3130142666 cites W2556985958 @default.
- W3130142666 cites W2613928755 @default.
- W3130142666 cites W2624621822 @default.
- W3130142666 cites W2742585132 @default.
- W3130142666 cites W2745765293 @default.
- W3130142666 cites W2766014011 @default.
- W3130142666 cites W2766438525 @default.
- W3130142666 cites W2785501279 @default.
- W3130142666 cites W2787894218 @default.
- W3130142666 cites W2798421489 @default.
- W3130142666 cites W2801390255 @default.
- W3130142666 cites W2801944335 @default.
- W3130142666 cites W2888073688 @default.
- W3130142666 cites W2904482261 @default.
- W3130142666 cites W2904782971 @default.
- W3130142666 cites W2911964244 @default.
- W3130142666 cites W2936250992 @default.
- W3130142666 cites W2949609212 @default.
- W3130142666 cites W2954788759 @default.
- W3130142666 cites W2999297183 @default.
- W3130142666 cites W3011093391 @default.
- W3130142666 cites W3017117984 @default.
- W3130142666 cites W3025213933 @default.
- W3130142666 cites W3034023990 @default.
- W3130142666 cites W3043741883 @default.
- W3130142666 cites W3047313819 @default.
- W3130142666 cites W3049089601 @default.
- W3130142666 cites W4239510810 @default.
- W3130142666 doi "https://doi.org/10.2174/1573404817666210215161108" @default.
- W3130142666 hasPublicationYear "2022" @default.
- W3130142666 type Work @default.
- W3130142666 sameAs 3130142666 @default.
- W3130142666 citedByCount "1" @default.
- W3130142666 countsByYear W31301426662023 @default.
- W3130142666 crossrefType "journal-article" @default.
- W3130142666 hasAuthorship W3130142666A5003502002 @default.
- W3130142666 hasAuthorship W3130142666A5007058356 @default.
- W3130142666 hasAuthorship W3130142666A5017427960 @default.
- W3130142666 hasAuthorship W3130142666A5044571099 @default.
- W3130142666 hasAuthorship W3130142666A5051653396 @default.
- W3130142666 hasAuthorship W3130142666A5055102508 @default.
- W3130142666 hasAuthorship W3130142666A5074779559 @default.
- W3130142666 hasConcept C119857082 @default.
- W3130142666 hasConcept C12267149 @default.
- W3130142666 hasConcept C126322002 @default.
- W3130142666 hasConcept C148483581 @default.
- W3130142666 hasConcept C151956035 @default.
- W3130142666 hasConcept C153180895 @default.
- W3130142666 hasConcept C154945302 @default.
- W3130142666 hasConcept C169258074 @default.