Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130173268> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3130173268 startingPage "29" @default.
- W3130173268 abstract "Lithium-Ion (Li-I) batteries have recently become pervasive and are used in many physical assets. To enable a good prediction of the end of discharge of batteries, detailed electrochemical Li-I battery models have been developed. Their parameters are typically calibrated before they are taken into operation and are typically not re-calibrated during operation. However, since battery performance is affected by aging, the reality gap between the computational battery models and the real physical systems leads to inaccurate predictions. A supervised machine learning algorithm would require an extensive representative training dataset mapping the observation to the ground truth calibration parameters. This may be infeasible for many practical applications. In this paper, we implement a Reinforcement Learning-based framework for reliably and efficiently inferring calibration parameters of battery models. The framework enables real-time inference of the computational model parameters in order to compensate the reality-gap from the observations. Most importantly, the proposed methodology does not need any labeled data samples, (samples of observations and the ground truth calibration parameters). Furthermore, the framework does not require any information on the underlying physical model. The experimental results demonstrate that the proposed methodology is capable of inferring the model parameters with high accuracy and high robustness. While the achieved results are comparable to those obtained with supervised machine learning, they do not rely on the ground truth information during training." @default.
- W3130173268 created "2021-03-01" @default.
- W3130173268 creator A5045654178 @default.
- W3130173268 creator A5062578105 @default.
- W3130173268 creator A5078230544 @default.
- W3130173268 creator A5079637160 @default.
- W3130173268 date "2020-12-12" @default.
- W3130173268 modified "2023-09-27" @default.
- W3130173268 title "Battery Model Calibration with Deep Reinforcement Learning" @default.
- W3130173268 hasPublicationYear "2020" @default.
- W3130173268 type Work @default.
- W3130173268 sameAs 3130173268 @default.
- W3130173268 citedByCount "0" @default.
- W3130173268 crossrefType "journal-article" @default.
- W3130173268 hasAuthorship W3130173268A5045654178 @default.
- W3130173268 hasAuthorship W3130173268A5062578105 @default.
- W3130173268 hasAuthorship W3130173268A5078230544 @default.
- W3130173268 hasAuthorship W3130173268A5079637160 @default.
- W3130173268 hasConcept C104317684 @default.
- W3130173268 hasConcept C105795698 @default.
- W3130173268 hasConcept C119857082 @default.
- W3130173268 hasConcept C121332964 @default.
- W3130173268 hasConcept C136389625 @default.
- W3130173268 hasConcept C146849305 @default.
- W3130173268 hasConcept C154945302 @default.
- W3130173268 hasConcept C163258240 @default.
- W3130173268 hasConcept C165838908 @default.
- W3130173268 hasConcept C185592680 @default.
- W3130173268 hasConcept C2776214188 @default.
- W3130173268 hasConcept C33923547 @default.
- W3130173268 hasConcept C41008148 @default.
- W3130173268 hasConcept C50644808 @default.
- W3130173268 hasConcept C55493867 @default.
- W3130173268 hasConcept C555008776 @default.
- W3130173268 hasConcept C62520636 @default.
- W3130173268 hasConcept C63479239 @default.
- W3130173268 hasConcept C97541855 @default.
- W3130173268 hasConceptScore W3130173268C104317684 @default.
- W3130173268 hasConceptScore W3130173268C105795698 @default.
- W3130173268 hasConceptScore W3130173268C119857082 @default.
- W3130173268 hasConceptScore W3130173268C121332964 @default.
- W3130173268 hasConceptScore W3130173268C136389625 @default.
- W3130173268 hasConceptScore W3130173268C146849305 @default.
- W3130173268 hasConceptScore W3130173268C154945302 @default.
- W3130173268 hasConceptScore W3130173268C163258240 @default.
- W3130173268 hasConceptScore W3130173268C165838908 @default.
- W3130173268 hasConceptScore W3130173268C185592680 @default.
- W3130173268 hasConceptScore W3130173268C2776214188 @default.
- W3130173268 hasConceptScore W3130173268C33923547 @default.
- W3130173268 hasConceptScore W3130173268C41008148 @default.
- W3130173268 hasConceptScore W3130173268C50644808 @default.
- W3130173268 hasConceptScore W3130173268C55493867 @default.
- W3130173268 hasConceptScore W3130173268C555008776 @default.
- W3130173268 hasConceptScore W3130173268C62520636 @default.
- W3130173268 hasConceptScore W3130173268C63479239 @default.
- W3130173268 hasConceptScore W3130173268C97541855 @default.
- W3130173268 hasLocation W31301732681 @default.
- W3130173268 hasOpenAccess W3130173268 @default.
- W3130173268 hasPrimaryLocation W31301732681 @default.
- W3130173268 hasRelatedWork W1599745991 @default.
- W3130173268 hasRelatedWork W2029386773 @default.
- W3130173268 hasRelatedWork W2106689178 @default.
- W3130173268 hasRelatedWork W2293322329 @default.
- W3130173268 hasRelatedWork W2294684892 @default.
- W3130173268 hasRelatedWork W2581696300 @default.
- W3130173268 hasRelatedWork W2805531251 @default.
- W3130173268 hasRelatedWork W2944847804 @default.
- W3130173268 hasRelatedWork W2976882439 @default.
- W3130173268 hasRelatedWork W2989902657 @default.
- W3130173268 hasRelatedWork W2991445767 @default.
- W3130173268 hasRelatedWork W2998618342 @default.
- W3130173268 hasRelatedWork W3096272898 @default.
- W3130173268 hasRelatedWork W3105138264 @default.
- W3130173268 hasRelatedWork W3110362480 @default.
- W3130173268 hasRelatedWork W3112119796 @default.
- W3130173268 hasRelatedWork W3112213085 @default.
- W3130173268 hasRelatedWork W3119028141 @default.
- W3130173268 hasRelatedWork W3204280598 @default.
- W3130173268 hasRelatedWork W2328068301 @default.
- W3130173268 isParatext "false" @default.
- W3130173268 isRetracted "false" @default.
- W3130173268 magId "3130173268" @default.
- W3130173268 workType "article" @default.