Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130202693> ?p ?o ?g. }
- W3130202693 abstract "With outstanding features, Machine Learning (ML) has been the backbone of numerous applications in wireless networks. However, the conventional ML approaches have been facing many challenges in practical implementation, such as the lack of labeled data, the constantly changing wireless environments, the long training process, and the limited capacity of wireless devices. These challenges, if not addressed, will impede the effectiveness and applicability of ML in future wireless networks. To address these problems, Transfer Learning (TL) has recently emerged to be a very promising solution. The core idea of TL is to leverage and synthesize distilled knowledge from similar tasks as well as from valuable experiences accumulated from the past to facilitate the learning of new problems. Doing so, TL techniques can reduce the dependence on labeled data, improve the learning speed, and enhance the ML methods' robustness to different wireless environments. This article aims to provide a comprehensive survey on applications of TL in wireless networks. Particularly, we first provide an overview of TL including formal definitions, classification, and various types of TL techniques. We then discuss diverse TL approaches proposed to address emerging issues in wireless networks. The issues include spectrum management, localization, signal recognition, security, human activity recognition and caching, which are all important to next-generation networks such as 5G and beyond. Finally, we highlight important challenges, open issues, and future research directions of TL in future wireless networks." @default.
- W3130202693 created "2021-03-01" @default.
- W3130202693 creator A5007992576 @default.
- W3130202693 creator A5031383490 @default.
- W3130202693 creator A5045434789 @default.
- W3130202693 creator A5047893827 @default.
- W3130202693 creator A5052317784 @default.
- W3130202693 creator A5052969129 @default.
- W3130202693 creator A5063537942 @default.
- W3130202693 creator A5085192467 @default.
- W3130202693 creator A5085560176 @default.
- W3130202693 creator A5091266202 @default.
- W3130202693 date "2021-02-15" @default.
- W3130202693 modified "2023-10-03" @default.
- W3130202693 title "Transfer Learning for Future Wireless Networks: A Comprehensive Survey." @default.
- W3130202693 cites W103215147 @default.
- W3130202693 cites W110451278 @default.
- W3130202693 cites W1481405077 @default.
- W3130202693 cites W1506658258 @default.
- W3130202693 cites W1515851193 @default.
- W3130202693 cites W1568297724 @default.
- W3130202693 cites W1767905185 @default.
- W3130202693 cites W1777239053 @default.
- W3130202693 cites W1821462560 @default.
- W3130202693 cites W1857382374 @default.
- W3130202693 cites W1956443157 @default.
- W3130202693 cites W1967849786 @default.
- W3130202693 cites W1967853313 @default.
- W3130202693 cites W1992920134 @default.
- W3130202693 cites W1995588456 @default.
- W3130202693 cites W2003823024 @default.
- W3130202693 cites W2030137848 @default.
- W3130202693 cites W2031727428 @default.
- W3130202693 cites W2032536435 @default.
- W3130202693 cites W2037265949 @default.
- W3130202693 cites W2079247031 @default.
- W3130202693 cites W2086229638 @default.
- W3130202693 cites W2088322911 @default.
- W3130202693 cites W2088435533 @default.
- W3130202693 cites W2090783579 @default.
- W3130202693 cites W2093540532 @default.
- W3130202693 cites W2095143852 @default.
- W3130202693 cites W2102419107 @default.
- W3130202693 cites W2115191221 @default.
- W3130202693 cites W2115575686 @default.
- W3130202693 cites W2122838776 @default.
- W3130202693 cites W2122922389 @default.
- W3130202693 cites W2123261262 @default.
- W3130202693 cites W2131157345 @default.
- W3130202693 cites W2133348086 @default.
- W3130202693 cites W2134845968 @default.
- W3130202693 cites W2145339207 @default.
- W3130202693 cites W2146874304 @default.
- W3130202693 cites W2149933564 @default.
- W3130202693 cites W2153816607 @default.
- W3130202693 cites W2155541015 @default.
- W3130202693 cites W2164419340 @default.
- W3130202693 cites W2165698076 @default.
- W3130202693 cites W2166096645 @default.
- W3130202693 cites W2189431159 @default.
- W3130202693 cites W225523 @default.
- W3130202693 cites W2284339649 @default.
- W3130202693 cites W22861983 @default.
- W3130202693 cites W2337030804 @default.
- W3130202693 cites W2342408547 @default.
- W3130202693 cites W2395579298 @default.
- W3130202693 cites W2475667482 @default.
- W3130202693 cites W2485005749 @default.
- W3130202693 cites W2527251439 @default.
- W3130202693 cites W2551956255 @default.
- W3130202693 cites W2552600366 @default.
- W3130202693 cites W2583761661 @default.
- W3130202693 cites W2591880439 @default.
- W3130202693 cites W2603396821 @default.
- W3130202693 cites W2605368761 @default.
- W3130202693 cites W2613020807 @default.
- W3130202693 cites W2625184353 @default.
- W3130202693 cites W2734408173 @default.
- W3130202693 cites W2735756791 @default.
- W3130202693 cites W2735793369 @default.
- W3130202693 cites W2748182655 @default.
- W3130202693 cites W2753857670 @default.
- W3130202693 cites W2770466517 @default.
- W3130202693 cites W2773170971 @default.
- W3130202693 cites W2773869132 @default.
- W3130202693 cites W2781626483 @default.
- W3130202693 cites W2783206954 @default.
- W3130202693 cites W2790836455 @default.
- W3130202693 cites W2800490461 @default.
- W3130202693 cites W2807652507 @default.
- W3130202693 cites W2808813966 @default.
- W3130202693 cites W2811069198 @default.
- W3130202693 cites W2837805563 @default.
- W3130202693 cites W2887280559 @default.
- W3130202693 cites W2895407085 @default.
- W3130202693 cites W2898035736 @default.
- W3130202693 cites W2900322357 @default.
- W3130202693 cites W2902788990 @default.
- W3130202693 cites W2904632047 @default.
- W3130202693 cites W2912877111 @default.