Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130211957> ?p ?o ?g. }
- W3130211957 endingPage "26" @default.
- W3130211957 startingPage "15" @default.
- W3130211957 abstract "We trained a deep learning algorithm to use skin optical coherence tomography (OCT) angiograms to differentiate between healthy and type 2 diabetic mice. OCT angiograms were acquired with a custom-built OCT system based on an akinetic swept laser at 1322 nm with a lateral resolution of ∼13 μm and using split-spectrum amplitude decorrelation. Our data set consisted of 24 stitched angiograms of the full ear, with a size of approximately 8.2 × 8.2 mm, evenly distributed between healthy and diabetic mice. The deep learning classification algorithm uses the ResNet v2 convolutional neural network architecture and was trained on small patches extracted from the full ear angiograms. For individual patches, we obtained a cross-validated accuracy of 0.925 and an area under the receiver operating characteristic curve (ROC AUC) of 0.974. Averaging over multiple patches extracted from each ear resulted in the correct classification of all 24 ears." @default.
- W3130211957 created "2021-03-01" @default.
- W3130211957 creator A5015017045 @default.
- W3130211957 creator A5019225873 @default.
- W3130211957 creator A5019849165 @default.
- W3130211957 creator A5030654610 @default.
- W3130211957 creator A5034873866 @default.
- W3130211957 creator A5045663496 @default.
- W3130211957 creator A5059290898 @default.
- W3130211957 creator A5088419383 @default.
- W3130211957 date "2021-02-26" @default.
- W3130211957 modified "2023-10-18" @default.
- W3130211957 title "Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images" @default.
- W3130211957 cites W1901129140 @default.
- W3130211957 cites W1984413434 @default.
- W3130211957 cites W1992868980 @default.
- W3130211957 cites W2010152463 @default.
- W3130211957 cites W2015159529 @default.
- W3130211957 cites W2027068294 @default.
- W3130211957 cites W2039367092 @default.
- W3130211957 cites W2050887133 @default.
- W3130211957 cites W2058333183 @default.
- W3130211957 cites W2062786827 @default.
- W3130211957 cites W2066261373 @default.
- W3130211957 cites W2070123028 @default.
- W3130211957 cites W2096320880 @default.
- W3130211957 cites W2133059825 @default.
- W3130211957 cites W2302255633 @default.
- W3130211957 cites W2319647406 @default.
- W3130211957 cites W2342719637 @default.
- W3130211957 cites W2408905170 @default.
- W3130211957 cites W2557738935 @default.
- W3130211957 cites W2592929672 @default.
- W3130211957 cites W2626629100 @default.
- W3130211957 cites W2767718193 @default.
- W3130211957 cites W2783924081 @default.
- W3130211957 cites W2788633781 @default.
- W3130211957 cites W2886801379 @default.
- W3130211957 cites W2898275263 @default.
- W3130211957 cites W2913223168 @default.
- W3130211957 cites W2915476521 @default.
- W3130211957 cites W2919115771 @default.
- W3130211957 cites W2979977622 @default.
- W3130211957 cites W2983395335 @default.
- W3130211957 cites W3002388361 @default.
- W3130211957 doi "https://doi.org/10.1111/nyas.14582" @default.
- W3130211957 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8451751" @default.
- W3130211957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33638189" @default.
- W3130211957 hasPublicationYear "2021" @default.
- W3130211957 type Work @default.
- W3130211957 sameAs 3130211957 @default.
- W3130211957 citedByCount "2" @default.
- W3130211957 countsByYear W31302119572022 @default.
- W3130211957 crossrefType "journal-article" @default.
- W3130211957 hasAuthorship W3130211957A5015017045 @default.
- W3130211957 hasAuthorship W3130211957A5019225873 @default.
- W3130211957 hasAuthorship W3130211957A5019849165 @default.
- W3130211957 hasAuthorship W3130211957A5030654610 @default.
- W3130211957 hasAuthorship W3130211957A5034873866 @default.
- W3130211957 hasAuthorship W3130211957A5045663496 @default.
- W3130211957 hasAuthorship W3130211957A5059290898 @default.
- W3130211957 hasAuthorship W3130211957A5088419383 @default.
- W3130211957 hasBestOaLocation W31302119572 @default.
- W3130211957 hasConcept C108583219 @default.
- W3130211957 hasConcept C118487528 @default.
- W3130211957 hasConcept C126322002 @default.
- W3130211957 hasConcept C126838900 @default.
- W3130211957 hasConcept C136229726 @default.
- W3130211957 hasConcept C153180895 @default.
- W3130211957 hasConcept C154945302 @default.
- W3130211957 hasConcept C163716698 @default.
- W3130211957 hasConcept C177860922 @default.
- W3130211957 hasConcept C2778818243 @default.
- W3130211957 hasConcept C2780643987 @default.
- W3130211957 hasConcept C2985858981 @default.
- W3130211957 hasConcept C2989005 @default.
- W3130211957 hasConcept C31972630 @default.
- W3130211957 hasConcept C41008148 @default.
- W3130211957 hasConcept C58471807 @default.
- W3130211957 hasConcept C71924100 @default.
- W3130211957 hasConcept C81363708 @default.
- W3130211957 hasConceptScore W3130211957C108583219 @default.
- W3130211957 hasConceptScore W3130211957C118487528 @default.
- W3130211957 hasConceptScore W3130211957C126322002 @default.
- W3130211957 hasConceptScore W3130211957C126838900 @default.
- W3130211957 hasConceptScore W3130211957C136229726 @default.
- W3130211957 hasConceptScore W3130211957C153180895 @default.
- W3130211957 hasConceptScore W3130211957C154945302 @default.
- W3130211957 hasConceptScore W3130211957C163716698 @default.
- W3130211957 hasConceptScore W3130211957C177860922 @default.
- W3130211957 hasConceptScore W3130211957C2778818243 @default.
- W3130211957 hasConceptScore W3130211957C2780643987 @default.
- W3130211957 hasConceptScore W3130211957C2985858981 @default.
- W3130211957 hasConceptScore W3130211957C2989005 @default.
- W3130211957 hasConceptScore W3130211957C31972630 @default.
- W3130211957 hasConceptScore W3130211957C41008148 @default.
- W3130211957 hasConceptScore W3130211957C58471807 @default.
- W3130211957 hasConceptScore W3130211957C71924100 @default.