Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130247029> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3130247029 abstract "Data mining methods can be used to classify people as sick or healthy and to diagnose diseases. One of the important challenges in diagnosing the disease using learning methods such as multilayer artificial neural network is the optimal selection of its parameters that can be solved to some extent with meta-heuristic methods, but these techniques are not without problems because in these methods meta-heuristic algorithm To a certain extent, it can only reduce the error, and to reduce the machine learning error, in addition to the optimal selection of learning parameters, it is necessary to consider and select the appropriate features. The proposed method has two layers and in the first layer the selection of weight and bias of the multilayer neural network is done using the fruit fly algorithm and in the input layer, the feature selection phase is done using the binary version of the fruit fly optimization algorithm to learn to Do it only on the important features and reduce the problem space and increase the learning speed and accuracy. The results of tests on several disease datasets in the UCI database show that the accuracy, sensitivity, and diagnosis of the proposed method are 98.36%, 98.12%, and 98.08%, respectively. The proposed method is more accurate in diagnosing diabetes than the PSO, FA, SHO, and HHO algorithms." @default.
- W3130247029 created "2021-03-01" @default.
- W3130247029 creator A5014005028 @default.
- W3130247029 creator A5077391518 @default.
- W3130247029 date "2020-12-23" @default.
- W3130247029 modified "2023-09-26" @default.
- W3130247029 title "Improving machine learning accuracy in diagnosing diseases using feature selection based on the fruit- fly algorithm" @default.
- W3130247029 cites W2232748179 @default.
- W3130247029 cites W2938285755 @default.
- W3130247029 cites W2954074628 @default.
- W3130247029 cites W2972226736 @default.
- W3130247029 cites W2990991805 @default.
- W3130247029 cites W2998361995 @default.
- W3130247029 cites W3004565805 @default.
- W3130247029 cites W3006128205 @default.
- W3130247029 doi "https://doi.org/10.1109/icspis51611.2020.9349593" @default.
- W3130247029 hasPublicationYear "2020" @default.
- W3130247029 type Work @default.
- W3130247029 sameAs 3130247029 @default.
- W3130247029 citedByCount "1" @default.
- W3130247029 countsByYear W31302470292022 @default.
- W3130247029 crossrefType "proceedings-article" @default.
- W3130247029 hasAuthorship W3130247029A5014005028 @default.
- W3130247029 hasAuthorship W3130247029A5077391518 @default.
- W3130247029 hasConcept C11413529 @default.
- W3130247029 hasConcept C119857082 @default.
- W3130247029 hasConcept C124101348 @default.
- W3130247029 hasConcept C127413603 @default.
- W3130247029 hasConcept C138885662 @default.
- W3130247029 hasConcept C148483581 @default.
- W3130247029 hasConcept C153180895 @default.
- W3130247029 hasConcept C154945302 @default.
- W3130247029 hasConcept C173801870 @default.
- W3130247029 hasConcept C178790620 @default.
- W3130247029 hasConcept C185592680 @default.
- W3130247029 hasConcept C21200559 @default.
- W3130247029 hasConcept C24326235 @default.
- W3130247029 hasConcept C2776401178 @default.
- W3130247029 hasConcept C2779227376 @default.
- W3130247029 hasConcept C41008148 @default.
- W3130247029 hasConcept C41895202 @default.
- W3130247029 hasConcept C50644808 @default.
- W3130247029 hasConcept C81917197 @default.
- W3130247029 hasConceptScore W3130247029C11413529 @default.
- W3130247029 hasConceptScore W3130247029C119857082 @default.
- W3130247029 hasConceptScore W3130247029C124101348 @default.
- W3130247029 hasConceptScore W3130247029C127413603 @default.
- W3130247029 hasConceptScore W3130247029C138885662 @default.
- W3130247029 hasConceptScore W3130247029C148483581 @default.
- W3130247029 hasConceptScore W3130247029C153180895 @default.
- W3130247029 hasConceptScore W3130247029C154945302 @default.
- W3130247029 hasConceptScore W3130247029C173801870 @default.
- W3130247029 hasConceptScore W3130247029C178790620 @default.
- W3130247029 hasConceptScore W3130247029C185592680 @default.
- W3130247029 hasConceptScore W3130247029C21200559 @default.
- W3130247029 hasConceptScore W3130247029C24326235 @default.
- W3130247029 hasConceptScore W3130247029C2776401178 @default.
- W3130247029 hasConceptScore W3130247029C2779227376 @default.
- W3130247029 hasConceptScore W3130247029C41008148 @default.
- W3130247029 hasConceptScore W3130247029C41895202 @default.
- W3130247029 hasConceptScore W3130247029C50644808 @default.
- W3130247029 hasConceptScore W3130247029C81917197 @default.
- W3130247029 hasLocation W31302470291 @default.
- W3130247029 hasOpenAccess W3130247029 @default.
- W3130247029 hasPrimaryLocation W31302470291 @default.
- W3130247029 hasRelatedWork W2374344280 @default.
- W3130247029 hasRelatedWork W2546942002 @default.
- W3130247029 hasRelatedWork W3174196512 @default.
- W3130247029 hasRelatedWork W3200179079 @default.
- W3130247029 hasRelatedWork W3210877509 @default.
- W3130247029 hasRelatedWork W4212852473 @default.
- W3130247029 hasRelatedWork W4225360065 @default.
- W3130247029 hasRelatedWork W4307883119 @default.
- W3130247029 hasRelatedWork W1629725936 @default.
- W3130247029 hasRelatedWork W2345184372 @default.
- W3130247029 isParatext "false" @default.
- W3130247029 isRetracted "false" @default.
- W3130247029 magId "3130247029" @default.
- W3130247029 workType "article" @default.