Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130248977> ?p ?o ?g. }
- W3130248977 abstract "Model comparison is the cornerstone of theoretical progress in psychological research. Common practice overwhelmingly relies on tools that evaluate competing models by balancing in-sample descriptive adequacy against model flexibility, with modern approaches advocating the use of marginal likelihood for hierarchical cognitive models. Cross-validation is another popular approach but its implementation remains out of reach for cognitive models evaluated in a Bayesian hierarchical framework, with the major hurdle being its prohibitive computational cost. To address this issue, we develop novel algorithms that make variational Bayes (VB) inference for hierarchical models feasible and computationally efficient for complex cognitive models of substantive theoretical interest. It is well known that VB produces good estimates of the first moments of the parameters, which gives good predictive densities estimates. We thus develop a novel VB algorithm with Bayesian prediction as a tool to perform model comparison by cross-validation, which we refer to as CVVB. In particular, CVVB can be used as a model screening device that quickly identifies bad models. We demonstrate the utility of CVVB by revisiting a classic question in decision making research: what latent components of processing drive the ubiquitous speed-accuracy tradeoff? We demonstrate that CVVB strongly agrees with model comparison via marginal likelihood, yet achieves the outcome in much less time. Our approach brings cross-validation within reach of theoretically important psychological models, making it feasible to compare much larger families of hierarchically specified cognitive models than has previously been possible. To enhance the applicability of the algorithm, we provide Matlab code together with a user manual so users can easily implement VB and/or CVVB for the models considered in this article and their variants. (PsycInfo Database Record (c) 2022 APA, all rights reserved)." @default.
- W3130248977 created "2021-03-01" @default.
- W3130248977 creator A5013464123 @default.
- W3130248977 creator A5040875924 @default.
- W3130248977 creator A5051693933 @default.
- W3130248977 creator A5074709577 @default.
- W3130248977 creator A5080782846 @default.
- W3130248977 creator A5081389777 @default.
- W3130248977 date "2022-04-21" @default.
- W3130248977 modified "2023-09-25" @default.
- W3130248977 title "Efficient selection between hierarchical cognitive models: Cross-validation with variational Bayes." @default.
- W3130248977 cites W1909320841 @default.
- W3130248977 cites W1973881715 @default.
- W3130248977 cites W1976927254 @default.
- W3130248977 cites W1994616650 @default.
- W3130248977 cites W2007178835 @default.
- W3130248977 cites W2009708711 @default.
- W3130248977 cites W2013140993 @default.
- W3130248977 cites W2014139245 @default.
- W3130248977 cites W2031896757 @default.
- W3130248977 cites W2039752037 @default.
- W3130248977 cites W2040217594 @default.
- W3130248977 cites W2053338030 @default.
- W3130248977 cites W2059424427 @default.
- W3130248977 cites W2059511681 @default.
- W3130248977 cites W2082935924 @default.
- W3130248977 cites W2083949963 @default.
- W3130248977 cites W2098205603 @default.
- W3130248977 cites W2100476792 @default.
- W3130248977 cites W2120669439 @default.
- W3130248977 cites W2129207020 @default.
- W3130248977 cites W2136582516 @default.
- W3130248977 cites W2151950896 @default.
- W3130248977 cites W2162280413 @default.
- W3130248977 cites W2165943343 @default.
- W3130248977 cites W2169356885 @default.
- W3130248977 cites W2179087376 @default.
- W3130248977 cites W2224136389 @default.
- W3130248977 cites W2290798512 @default.
- W3130248977 cites W2579661004 @default.
- W3130248977 cites W2595142274 @default.
- W3130248977 cites W2892883002 @default.
- W3130248977 cites W2898390262 @default.
- W3130248977 cites W2913472264 @default.
- W3130248977 cites W2951004968 @default.
- W3130248977 cites W2973181914 @default.
- W3130248977 cites W2978060606 @default.
- W3130248977 cites W2980040677 @default.
- W3130248977 cites W3016634716 @default.
- W3130248977 cites W3024975719 @default.
- W3130248977 cites W3104887532 @default.
- W3130248977 cites W6908809 @default.
- W3130248977 doi "https://doi.org/10.1037/met0000458" @default.
- W3130248977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35446049" @default.
- W3130248977 hasPublicationYear "2022" @default.
- W3130248977 type Work @default.
- W3130248977 sameAs 3130248977 @default.
- W3130248977 citedByCount "1" @default.
- W3130248977 countsByYear W31302489772023 @default.
- W3130248977 crossrefType "journal-article" @default.
- W3130248977 hasAuthorship W3130248977A5013464123 @default.
- W3130248977 hasAuthorship W3130248977A5040875924 @default.
- W3130248977 hasAuthorship W3130248977A5051693933 @default.
- W3130248977 hasAuthorship W3130248977A5074709577 @default.
- W3130248977 hasAuthorship W3130248977A5080782846 @default.
- W3130248977 hasAuthorship W3130248977A5081389777 @default.
- W3130248977 hasBestOaLocation W31302489772 @default.
- W3130248977 hasConcept C105795698 @default.
- W3130248977 hasConcept C107673813 @default.
- W3130248977 hasConcept C119857082 @default.
- W3130248977 hasConcept C142291917 @default.
- W3130248977 hasConcept C154945302 @default.
- W3130248977 hasConcept C160234255 @default.
- W3130248977 hasConcept C199360897 @default.
- W3130248977 hasConcept C207201462 @default.
- W3130248977 hasConcept C27181475 @default.
- W3130248977 hasConcept C2776214188 @default.
- W3130248977 hasConcept C2777655017 @default.
- W3130248977 hasConcept C2780598303 @default.
- W3130248977 hasConcept C33923547 @default.
- W3130248977 hasConcept C41008148 @default.
- W3130248977 hasConcept C53059260 @default.
- W3130248977 hasConcept C66024118 @default.
- W3130248977 hasConcept C93959086 @default.
- W3130248977 hasConcept C95923904 @default.
- W3130248977 hasConceptScore W3130248977C105795698 @default.
- W3130248977 hasConceptScore W3130248977C107673813 @default.
- W3130248977 hasConceptScore W3130248977C119857082 @default.
- W3130248977 hasConceptScore W3130248977C142291917 @default.
- W3130248977 hasConceptScore W3130248977C154945302 @default.
- W3130248977 hasConceptScore W3130248977C160234255 @default.
- W3130248977 hasConceptScore W3130248977C199360897 @default.
- W3130248977 hasConceptScore W3130248977C207201462 @default.
- W3130248977 hasConceptScore W3130248977C27181475 @default.
- W3130248977 hasConceptScore W3130248977C2776214188 @default.
- W3130248977 hasConceptScore W3130248977C2777655017 @default.
- W3130248977 hasConceptScore W3130248977C2780598303 @default.
- W3130248977 hasConceptScore W3130248977C33923547 @default.
- W3130248977 hasConceptScore W3130248977C41008148 @default.
- W3130248977 hasConceptScore W3130248977C53059260 @default.