Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130367027> ?p ?o ?g. }
- W3130367027 endingPage "30205" @default.
- W3130367027 startingPage "30193" @default.
- W3130367027 abstract "In this manuscript, we propose a Machine Learning approach to tackle a binary classification problem whose goal is to predict the magnitude (high or low) of future stock price variations for individual companies of the S&P 500 index. Sets of lexicons are generated from globally published articles with the goal of identifying the most impactful words on the market in a specific time interval and within a certain business sector. A feature engineering process is then performed out of the generated lexicons, and the obtained features are fed to a Decision Tree classifier. The predicted label (high or low) represents the underlying company's stock price variation on the next day, being either higher or lower than a certain threshold. The performance evaluation we have carried out through a walk-forward strategy, and against a set of solid baselines, shows that our approach clearly outperforms the competitors. Moreover, the devised Artificial Intelligence (AI) approach is explainable, in the sense that we analyze the white-box behind the classifier and provide a set of explanations on the obtained results." @default.
- W3130367027 created "2021-03-01" @default.
- W3130367027 creator A5014673075 @default.
- W3130367027 creator A5029063875 @default.
- W3130367027 creator A5033462784 @default.
- W3130367027 creator A5061407659 @default.
- W3130367027 creator A5069275031 @default.
- W3130367027 date "2021-01-01" @default.
- W3130367027 modified "2023-10-18" @default.
- W3130367027 title "Explainable Machine Learning Exploiting News and Domain-Specific Lexicon for Stock Market Forecasting" @default.
- W3130367027 cites W1508206474 @default.
- W3130367027 cites W1584236903 @default.
- W3130367027 cites W1596717185 @default.
- W3130367027 cites W1965235124 @default.
- W3130367027 cites W1998450312 @default.
- W3130367027 cites W2009591769 @default.
- W3130367027 cites W2015174807 @default.
- W3130367027 cites W2058168013 @default.
- W3130367027 cites W2070013029 @default.
- W3130367027 cites W2070493638 @default.
- W3130367027 cites W2089247440 @default.
- W3130367027 cites W2092729734 @default.
- W3130367027 cites W2094043862 @default.
- W3130367027 cites W2101210369 @default.
- W3130367027 cites W2103318667 @default.
- W3130367027 cites W2106895738 @default.
- W3130367027 cites W2125283600 @default.
- W3130367027 cites W2141278204 @default.
- W3130367027 cites W2156986752 @default.
- W3130367027 cites W2174706414 @default.
- W3130367027 cites W2251101833 @default.
- W3130367027 cites W2282821441 @default.
- W3130367027 cites W2766718178 @default.
- W3130367027 cites W2788057825 @default.
- W3130367027 cites W2790777705 @default.
- W3130367027 cites W2794757410 @default.
- W3130367027 cites W2889251616 @default.
- W3130367027 cites W2895144199 @default.
- W3130367027 cites W2895919385 @default.
- W3130367027 cites W2897244933 @default.
- W3130367027 cites W2899332657 @default.
- W3130367027 cites W2911964244 @default.
- W3130367027 cites W2916041057 @default.
- W3130367027 cites W2921196518 @default.
- W3130367027 cites W2944770027 @default.
- W3130367027 cites W2963847595 @default.
- W3130367027 cites W2967884905 @default.
- W3130367027 cites W2970684294 @default.
- W3130367027 cites W2981731882 @default.
- W3130367027 cites W2989538138 @default.
- W3130367027 cites W3047659929 @default.
- W3130367027 cites W3083252136 @default.
- W3130367027 cites W3122305330 @default.
- W3130367027 cites W3124187578 @default.
- W3130367027 cites W3124620790 @default.
- W3130367027 cites W4231546411 @default.
- W3130367027 doi "https://doi.org/10.1109/access.2021.3059960" @default.
- W3130367027 hasPublicationYear "2021" @default.
- W3130367027 type Work @default.
- W3130367027 sameAs 3130367027 @default.
- W3130367027 citedByCount "33" @default.
- W3130367027 countsByYear W31303670272021 @default.
- W3130367027 countsByYear W31303670272022 @default.
- W3130367027 countsByYear W31303670272023 @default.
- W3130367027 crossrefType "journal-article" @default.
- W3130367027 hasAuthorship W3130367027A5014673075 @default.
- W3130367027 hasAuthorship W3130367027A5029063875 @default.
- W3130367027 hasAuthorship W3130367027A5033462784 @default.
- W3130367027 hasAuthorship W3130367027A5061407659 @default.
- W3130367027 hasAuthorship W3130367027A5069275031 @default.
- W3130367027 hasBestOaLocation W31303670271 @default.
- W3130367027 hasConcept C108583219 @default.
- W3130367027 hasConcept C119857082 @default.
- W3130367027 hasConcept C127576917 @default.
- W3130367027 hasConcept C151730666 @default.
- W3130367027 hasConcept C154945302 @default.
- W3130367027 hasConcept C162324750 @default.
- W3130367027 hasConcept C187736073 @default.
- W3130367027 hasConcept C2776256503 @default.
- W3130367027 hasConcept C2778121359 @default.
- W3130367027 hasConcept C2778827112 @default.
- W3130367027 hasConcept C2780299701 @default.
- W3130367027 hasConcept C2780762169 @default.
- W3130367027 hasConcept C41008148 @default.
- W3130367027 hasConcept C84525736 @default.
- W3130367027 hasConcept C86803240 @default.
- W3130367027 hasConcept C95623464 @default.
- W3130367027 hasConceptScore W3130367027C108583219 @default.
- W3130367027 hasConceptScore W3130367027C119857082 @default.
- W3130367027 hasConceptScore W3130367027C127576917 @default.
- W3130367027 hasConceptScore W3130367027C151730666 @default.
- W3130367027 hasConceptScore W3130367027C154945302 @default.
- W3130367027 hasConceptScore W3130367027C162324750 @default.
- W3130367027 hasConceptScore W3130367027C187736073 @default.
- W3130367027 hasConceptScore W3130367027C2776256503 @default.
- W3130367027 hasConceptScore W3130367027C2778121359 @default.
- W3130367027 hasConceptScore W3130367027C2778827112 @default.
- W3130367027 hasConceptScore W3130367027C2780299701 @default.