Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130376580> ?p ?o ?g. }
- W3130376580 endingPage "24" @default.
- W3130376580 startingPage "24" @default.
- W3130376580 abstract "Machine learning (ML) has been slowly entering every aspect of our lives and its positive impact has been astonishing. To accelerate embedding ML in more applications and incorporating it in real-world scenarios, automated machine learning (AutoML) is emerging. The main purpose of AutoML is to provide seamless integration of ML in various industries, which will facilitate better outcomes in everyday tasks. In healthcare, AutoML has been already applied to easier settings with structured data such as tabular lab data. However, there is still a need for applying AutoML for interpreting medical text, which is being generated at a tremendous rate. For this to happen, a promising method is AutoML for clinical notes analysis, which is an unexplored research area representing a gap in ML research. The main objective of this paper is to fill this gap and provide a comprehensive survey and analytical study towards AutoML for clinical notes. To that end, we first introduce the AutoML technology and review its various tools and techniques. We then survey the literature of AutoML in the healthcare industry and discuss the developments specific to clinical settings, as well as those using general AutoML tools for healthcare applications. With this background, we then discuss challenges of working with clinical notes and highlight the benefits of developing AutoML for medical notes processing. Next, we survey relevant ML research for clinical notes and analyze the literature and the field of AutoML in the healthcare industry. Furthermore, we propose future research directions and shed light on the challenges and opportunities this emerging field holds. With this, we aim to assist the community with the implementation of an AutoML platform for medical notes, which if realized can revolutionize patient outcomes." @default.
- W3130376580 created "2021-03-01" @default.
- W3130376580 creator A5009413337 @default.
- W3130376580 creator A5016388694 @default.
- W3130376580 date "2021-02-22" @default.
- W3130376580 modified "2023-10-05" @default.
- W3130376580 title "Automated Machine Learning for Healthcare and Clinical Notes Analysis" @default.
- W3130376580 cites W115710901 @default.
- W3130376580 cites W1927503436 @default.
- W3130376580 cites W1966716734 @default.
- W3130376580 cites W2007666495 @default.
- W3130376580 cites W2012560661 @default.
- W3130376580 cites W2025428542 @default.
- W3130376580 cites W2036439084 @default.
- W3130376580 cites W2037163971 @default.
- W3130376580 cites W2037625543 @default.
- W3130376580 cites W2082258771 @default.
- W3130376580 cites W2096664202 @default.
- W3130376580 cites W2097101873 @default.
- W3130376580 cites W2109056977 @default.
- W3130376580 cites W2111437636 @default.
- W3130376580 cites W2116972869 @default.
- W3130376580 cites W2121920862 @default.
- W3130376580 cites W2128535227 @default.
- W3130376580 cites W2132724073 @default.
- W3130376580 cites W2133160781 @default.
- W3130376580 cites W2144935164 @default.
- W3130376580 cites W2146089916 @default.
- W3130376580 cites W2146241755 @default.
- W3130376580 cites W2151554678 @default.
- W3130376580 cites W2153393891 @default.
- W3130376580 cites W2167101736 @default.
- W3130376580 cites W2192203593 @default.
- W3130376580 cites W2203714058 @default.
- W3130376580 cites W2238966896 @default.
- W3130376580 cites W2245472176 @default.
- W3130376580 cites W2324408290 @default.
- W3130376580 cites W2404901863 @default.
- W3130376580 cites W2407212869 @default.
- W3130376580 cites W2465107213 @default.
- W3130376580 cites W2587516060 @default.
- W3130376580 cites W2598563508 @default.
- W3130376580 cites W2605191883 @default.
- W3130376580 cites W2605512411 @default.
- W3130376580 cites W2746316842 @default.
- W3130376580 cites W2749701213 @default.
- W3130376580 cites W2751143095 @default.
- W3130376580 cites W2755247101 @default.
- W3130376580 cites W2767350626 @default.
- W3130376580 cites W2772121968 @default.
- W3130376580 cites W2786554073 @default.
- W3130376580 cites W2789894922 @default.
- W3130376580 cites W2793303269 @default.
- W3130376580 cites W2803920401 @default.
- W3130376580 cites W2809880372 @default.
- W3130376580 cites W2888620177 @default.
- W3130376580 cites W2889764698 @default.
- W3130376580 cites W2891469329 @default.
- W3130376580 cites W2905810301 @default.
- W3130376580 cites W2927032858 @default.
- W3130376580 cites W2927980542 @default.
- W3130376580 cites W2944848758 @default.
- W3130376580 cites W2947282146 @default.
- W3130376580 cites W2947903144 @default.
- W3130376580 cites W2969705914 @default.
- W3130376580 cites W2972198316 @default.
- W3130376580 cites W2975172371 @default.
- W3130376580 cites W2996406085 @default.
- W3130376580 cites W2997569720 @default.
- W3130376580 cites W2999929466 @default.
- W3130376580 cites W3006363682 @default.
- W3130376580 cites W3006913750 @default.
- W3130376580 cites W3019205623 @default.
- W3130376580 cites W3023203147 @default.
- W3130376580 cites W3024808442 @default.
- W3130376580 cites W3024922541 @default.
- W3130376580 cites W3034957310 @default.
- W3130376580 cites W3035142875 @default.
- W3130376580 cites W3036927603 @default.
- W3130376580 cites W3039363706 @default.
- W3130376580 cites W3082503384 @default.
- W3130376580 cites W3087238889 @default.
- W3130376580 cites W3095791468 @default.
- W3130376580 cites W3097855118 @default.
- W3130376580 doi "https://doi.org/10.3390/computers10020024" @default.
- W3130376580 hasPublicationYear "2021" @default.
- W3130376580 type Work @default.
- W3130376580 sameAs 3130376580 @default.
- W3130376580 citedByCount "37" @default.
- W3130376580 countsByYear W31303765802021 @default.
- W3130376580 countsByYear W31303765802022 @default.
- W3130376580 countsByYear W31303765802023 @default.
- W3130376580 crossrefType "journal-article" @default.
- W3130376580 hasAuthorship W3130376580A5009413337 @default.
- W3130376580 hasAuthorship W3130376580A5016388694 @default.
- W3130376580 hasBestOaLocation W31303765801 @default.
- W3130376580 hasConcept C127413603 @default.
- W3130376580 hasConcept C154945302 @default.