Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130443363> ?p ?o ?g. }
- W3130443363 endingPage "1313" @default.
- W3130443363 startingPage "1313" @default.
- W3130443363 abstract "In this paper, we study deep learning approaches for monocular visual odometry (VO). Deep learning solutions have shown to be effective in VO applications, replacing the need for highly engineered steps, such as feature extraction and outlier rejection in a traditional pipeline. We propose a new architecture combining ego-motion estimation and sequence-based learning using deep neural networks. We estimate camera motion from optical flow using Convolutional Neural Networks (CNNs) and model the motion dynamics using Recurrent Neural Networks (RNNs). The network outputs the relative 6-DOF camera poses for a sequence, and implicitly learns the absolute scale without the need for camera intrinsics. The entire trajectory is then integrated without any post-calibration. We evaluate the proposed method on the KITTI dataset and compare it with traditional and other deep learning approaches in the literature." @default.
- W3130443363 created "2021-03-01" @default.
- W3130443363 creator A5008992213 @default.
- W3130443363 creator A5010485146 @default.
- W3130443363 creator A5022197514 @default.
- W3130443363 creator A5043631421 @default.
- W3130443363 date "2021-02-12" @default.
- W3130443363 modified "2023-09-26" @default.
- W3130443363 title "Leveraging Deep Learning for Visual Odometry Using Optical Flow" @default.
- W3130443363 cites W1531122638 @default.
- W3130443363 cites W1970504153 @default.
- W3130443363 cites W2015996585 @default.
- W3130443363 cites W2021930164 @default.
- W3130443363 cites W2091790851 @default.
- W3130443363 cites W2097197771 @default.
- W3130443363 cites W2115579991 @default.
- W3130443363 cites W2166132830 @default.
- W3130443363 cites W2167777630 @default.
- W3130443363 cites W2168676389 @default.
- W3130443363 cites W2220063164 @default.
- W3130443363 cites W2474281075 @default.
- W3130443363 cites W2612774882 @default.
- W3130443363 cites W2954269264 @default.
- W3130443363 cites W2963233640 @default.
- W3130443363 cites W3003662786 @default.
- W3130443363 cites W3099698729 @default.
- W3130443363 cites W3102327032 @default.
- W3130443363 cites W3103648783 @default.
- W3130443363 cites W4243425824 @default.
- W3130443363 cites W4246614213 @default.
- W3130443363 doi "https://doi.org/10.3390/s21041313" @default.
- W3130443363 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7918879" @default.
- W3130443363 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33673119" @default.
- W3130443363 hasPublicationYear "2021" @default.
- W3130443363 type Work @default.
- W3130443363 sameAs 3130443363 @default.
- W3130443363 citedByCount "16" @default.
- W3130443363 countsByYear W31304433632021 @default.
- W3130443363 countsByYear W31304433632022 @default.
- W3130443363 countsByYear W31304433632023 @default.
- W3130443363 crossrefType "journal-article" @default.
- W3130443363 hasAuthorship W3130443363A5008992213 @default.
- W3130443363 hasAuthorship W3130443363A5010485146 @default.
- W3130443363 hasAuthorship W3130443363A5022197514 @default.
- W3130443363 hasAuthorship W3130443363A5043631421 @default.
- W3130443363 hasBestOaLocation W31304433631 @default.
- W3130443363 hasConcept C108583219 @default.
- W3130443363 hasConcept C115961682 @default.
- W3130443363 hasConcept C138885662 @default.
- W3130443363 hasConcept C153180895 @default.
- W3130443363 hasConcept C154945302 @default.
- W3130443363 hasConcept C155542232 @default.
- W3130443363 hasConcept C199360897 @default.
- W3130443363 hasConcept C19966478 @default.
- W3130443363 hasConcept C2776401178 @default.
- W3130443363 hasConcept C31972630 @default.
- W3130443363 hasConcept C41008148 @default.
- W3130443363 hasConcept C41895202 @default.
- W3130443363 hasConcept C43521106 @default.
- W3130443363 hasConcept C49441653 @default.
- W3130443363 hasConcept C50644808 @default.
- W3130443363 hasConcept C5799516 @default.
- W3130443363 hasConcept C65909025 @default.
- W3130443363 hasConcept C81363708 @default.
- W3130443363 hasConcept C90509273 @default.
- W3130443363 hasConceptScore W3130443363C108583219 @default.
- W3130443363 hasConceptScore W3130443363C115961682 @default.
- W3130443363 hasConceptScore W3130443363C138885662 @default.
- W3130443363 hasConceptScore W3130443363C153180895 @default.
- W3130443363 hasConceptScore W3130443363C154945302 @default.
- W3130443363 hasConceptScore W3130443363C155542232 @default.
- W3130443363 hasConceptScore W3130443363C199360897 @default.
- W3130443363 hasConceptScore W3130443363C19966478 @default.
- W3130443363 hasConceptScore W3130443363C2776401178 @default.
- W3130443363 hasConceptScore W3130443363C31972630 @default.
- W3130443363 hasConceptScore W3130443363C41008148 @default.
- W3130443363 hasConceptScore W3130443363C41895202 @default.
- W3130443363 hasConceptScore W3130443363C43521106 @default.
- W3130443363 hasConceptScore W3130443363C49441653 @default.
- W3130443363 hasConceptScore W3130443363C50644808 @default.
- W3130443363 hasConceptScore W3130443363C5799516 @default.
- W3130443363 hasConceptScore W3130443363C65909025 @default.
- W3130443363 hasConceptScore W3130443363C81363708 @default.
- W3130443363 hasConceptScore W3130443363C90509273 @default.
- W3130443363 hasIssue "4" @default.
- W3130443363 hasLocation W31304433631 @default.
- W3130443363 hasLocation W31304433632 @default.
- W3130443363 hasLocation W31304433633 @default.
- W3130443363 hasOpenAccess W3130443363 @default.
- W3130443363 hasPrimaryLocation W31304433631 @default.
- W3130443363 hasRelatedWork W2085689676 @default.
- W3130443363 hasRelatedWork W2126722086 @default.
- W3130443363 hasRelatedWork W2149538904 @default.
- W3130443363 hasRelatedWork W2565472677 @default.
- W3130443363 hasRelatedWork W2610028676 @default.
- W3130443363 hasRelatedWork W2765880105 @default.
- W3130443363 hasRelatedWork W3110752836 @default.
- W3130443363 hasRelatedWork W3130443363 @default.