Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130452425> ?p ?o ?g. }
- W3130452425 endingPage "1971" @default.
- W3130452425 startingPage "1961" @default.
- W3130452425 abstract "ConspectusSyngas conversion is a key platform for efficient utilization of various carbon-containing resources including coal, natural gas, biomass, organic wastes, and even CO2. One of the most classic routes for syngas conversion is Fischer–Tropsch synthesis (FTS), which is already available for commercial application. However, it still remains a grand challenge to tune the product distribution from paraffins to value-added chemicals such as olefins and higher alcohols. Breaking the selectivity limitation of the Anderson–Schulz–Flory (ASF) distribution has been one of the hottest topics in syngas chemistry.Metallic Co0 is a well-known active phase for Co-catalyzed FTS, and the products are dominated by paraffins with a small amount of chemicals (i.e., olefins or alcohols). Specifically, a cobalt carbide (Co2C) phase is typically viewed as an undesirable compound that could lead to deactivation with low activity and high methane selectivity. Although iron carbide (FexC) can produce olefins with selectivity up to ∼60%, the fraction of methane is still rather high, and the required high reaction temperature (300–350 °C) typically causes coke deposition and fast deactivation. Recently, we discovered that Co2C nanoprisms with preferentially exposed facets of (020) and (101) can effectively produce olefins from syngas conversion under mild reaction conditions with high selectivity. The methane fraction was limited within 5%, and the product distribution deviated greatly from ASF statistic law. The catalytic performances of Co2C nanoprisms are completely different from that reported for the traditional FT process, exhibiting promising potential industrial application.This Account summarizes our progress in the development of Co2C nanoprisms for Fischer–Tropsch synthesis to olefins (FTO) with remarkable efficiencies and stability. The underlying mechanism for the observed unique catalytic behaviors was extensively explored by combining DFT calculation, kinetic measurements, and various spectroscopic and microscopic investigation. We also emphasize the following issues: particle size effect of Co2C, the promotional effect of alkali and Mn promoters, and the role of metal–support interaction (SMI) in fabricating supported Co2C nanoprisms. Specially, we briefly review the synthetic methods for different Co2C nanostructures. In addition, Co2C can also be applied as a nondissociative adsorption center for higher alcohol synthesis (HAS) via syngas conversion. We also discuss the construction of a Co0/Co2C interfacial catalyst for HAS and demonstrate how to tune the reaction network and strengthen CO nondissociative adsorption ability for efficient production of higher alcohols. We believe that the advances in the development of Co2C nanocatalysts described here present a critic step to produce chemicals through the FTS process." @default.
- W3130452425 created "2021-03-01" @default.
- W3130452425 creator A5016992819 @default.
- W3130452425 creator A5022840101 @default.
- W3130452425 creator A5035772955 @default.
- W3130452425 creator A5038690033 @default.
- W3130452425 creator A5045108566 @default.
- W3130452425 creator A5054616331 @default.
- W3130452425 creator A5086718326 @default.
- W3130452425 creator A5090614196 @default.
- W3130452425 date "2021-02-18" @default.
- W3130452425 modified "2023-10-16" @default.
- W3130452425 title "Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity" @default.
- W3130452425 cites W1967796261 @default.
- W3130452425 cites W1968361391 @default.
- W3130452425 cites W1975032324 @default.
- W3130452425 cites W1983929649 @default.
- W3130452425 cites W2005934190 @default.
- W3130452425 cites W2029774833 @default.
- W3130452425 cites W2030880888 @default.
- W3130452425 cites W2055393736 @default.
- W3130452425 cites W2119611880 @default.
- W3130452425 cites W2125042418 @default.
- W3130452425 cites W2160447696 @default.
- W3130452425 cites W2165415430 @default.
- W3130452425 cites W2202021336 @default.
- W3130452425 cites W2293193226 @default.
- W3130452425 cites W2323504704 @default.
- W3130452425 cites W2338512862 @default.
- W3130452425 cites W2340612282 @default.
- W3130452425 cites W2477980016 @default.
- W3130452425 cites W2513990413 @default.
- W3130452425 cites W2528401340 @default.
- W3130452425 cites W2528925652 @default.
- W3130452425 cites W2565036453 @default.
- W3130452425 cites W2575402529 @default.
- W3130452425 cites W2607503584 @default.
- W3130452425 cites W2611217492 @default.
- W3130452425 cites W2613692005 @default.
- W3130452425 cites W2622050079 @default.
- W3130452425 cites W2751480789 @default.
- W3130452425 cites W2760999949 @default.
- W3130452425 cites W2762333602 @default.
- W3130452425 cites W2762529689 @default.
- W3130452425 cites W2765514846 @default.
- W3130452425 cites W2766959070 @default.
- W3130452425 cites W2791252045 @default.
- W3130452425 cites W2794259011 @default.
- W3130452425 cites W2810087368 @default.
- W3130452425 cites W2890677500 @default.
- W3130452425 cites W2895335554 @default.
- W3130452425 cites W2898997414 @default.
- W3130452425 cites W2904803203 @default.
- W3130452425 cites W2914412060 @default.
- W3130452425 cites W2944708026 @default.
- W3130452425 cites W2946700511 @default.
- W3130452425 cites W2963604728 @default.
- W3130452425 cites W2972698262 @default.
- W3130452425 cites W2997410966 @default.
- W3130452425 cites W3002738036 @default.
- W3130452425 cites W3005208489 @default.
- W3130452425 cites W3010173136 @default.
- W3130452425 cites W3015862330 @default.
- W3130452425 cites W3021588184 @default.
- W3130452425 cites W3035753006 @default.
- W3130452425 cites W3035834918 @default.
- W3130452425 cites W3115392173 @default.
- W3130452425 cites W4238672774 @default.
- W3130452425 doi "https://doi.org/10.1021/acs.accounts.0c00883" @default.
- W3130452425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33599477" @default.
- W3130452425 hasPublicationYear "2021" @default.
- W3130452425 type Work @default.
- W3130452425 sameAs 3130452425 @default.
- W3130452425 citedByCount "42" @default.
- W3130452425 countsByYear W31304524252021 @default.
- W3130452425 countsByYear W31304524252022 @default.
- W3130452425 countsByYear W31304524252023 @default.
- W3130452425 crossrefType "journal-article" @default.
- W3130452425 hasAuthorship W3130452425A5016992819 @default.
- W3130452425 hasAuthorship W3130452425A5022840101 @default.
- W3130452425 hasAuthorship W3130452425A5035772955 @default.
- W3130452425 hasAuthorship W3130452425A5038690033 @default.
- W3130452425 hasAuthorship W3130452425A5045108566 @default.
- W3130452425 hasAuthorship W3130452425A5054616331 @default.
- W3130452425 hasAuthorship W3130452425A5086718326 @default.
- W3130452425 hasAuthorship W3130452425A5090614196 @default.
- W3130452425 hasConcept C108285982 @default.
- W3130452425 hasConcept C118792377 @default.
- W3130452425 hasConcept C127413603 @default.
- W3130452425 hasConcept C161790260 @default.
- W3130452425 hasConcept C17112743 @default.
- W3130452425 hasConcept C178790620 @default.
- W3130452425 hasConcept C185592680 @default.
- W3130452425 hasConcept C194439259 @default.
- W3130452425 hasConcept C42360764 @default.
- W3130452425 hasConcept C515602321 @default.
- W3130452425 hasConcept C516920438 @default.
- W3130452425 hasConcept C5335593 @default.