Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130551496> ?p ?o ?g. }
- W3130551496 endingPage "362" @default.
- W3130551496 startingPage "355" @default.
- W3130551496 abstract "Training a convolutional neural network (CNN) to detect the most common causes of shoulder pain on plain radiographs and to assess its potential value in serving as an assistive device to physicians.We used a CNN of the ResNet-50 architecture which was trained on 2700 shoulder radiographs from clinical practice of multiple institutions. All radiographs were reviewed and labeled for six findings: proximal humeral fractures, joint dislocation, periarticular calcification, osteoarthritis, osteosynthesis, and joint endoprosthesis. The trained model was then evaluated on a separate test dataset, which was previously annotated by three independent expert radiologists. Both the training and the test datasets included radiographs of highly variable image quality to reflect the clinical situation and to foster robustness of the CNN. Performance of the model was evaluated using receiver operating characteristic (ROC) curves, the thereof derived AUC as well as sensitivity and specificity.The developed CNN demonstrated a high accuracy with an area under the curve (AUC) of 0.871 for detecting fractures, 0.896 for joint dislocation, 0.945 for osteoarthritis, and 0.800 for periarticular calcifications. It also detected osteosynthesis and endoprosthesis with near perfect accuracy (AUC 0.998 and 1.0, respectively). Sensitivity and specificity were 0.75 and 0.86 for fractures, 0.95 and 0.65 for joint dislocation, 0.90 and 0.86 for osteoarthrosis, and 0.60 and 0.89 for calcification.CNNs have the potential to serve as an assistive device by providing clinicians a means to prioritize worklists or providing additional safety in situations of increased workload." @default.
- W3130551496 created "2021-03-01" @default.
- W3130551496 creator A5005164520 @default.
- W3130551496 creator A5006318966 @default.
- W3130551496 creator A5012185911 @default.
- W3130551496 creator A5019723161 @default.
- W3130551496 creator A5028898347 @default.
- W3130551496 creator A5041684701 @default.
- W3130551496 creator A5084093407 @default.
- W3130551496 date "2021-02-20" @default.
- W3130551496 modified "2023-10-15" @default.
- W3130551496 title "Deep learning for accurately recognizing common causes of shoulder pain on radiographs" @default.
- W3130551496 cites W1973715030 @default.
- W3130551496 cites W1992579055 @default.
- W3130551496 cites W2005844095 @default.
- W3130551496 cites W2094675057 @default.
- W3130551496 cites W2107590441 @default.
- W3130551496 cites W2107653734 @default.
- W3130551496 cites W2145126338 @default.
- W3130551496 cites W2159294439 @default.
- W3130551496 cites W2194775991 @default.
- W3130551496 cites W2581082771 @default.
- W3130551496 cites W2621007086 @default.
- W3130551496 cites W2793251588 @default.
- W3130551496 cites W2797594151 @default.
- W3130551496 cites W2903724242 @default.
- W3130551496 cites W2934730619 @default.
- W3130551496 cites W2962858109 @default.
- W3130551496 cites W2963202012 @default.
- W3130551496 cites W2963565427 @default.
- W3130551496 cites W2964879006 @default.
- W3130551496 cites W2990427812 @default.
- W3130551496 cites W3004568768 @default.
- W3130551496 cites W3005090064 @default.
- W3130551496 cites W3013902712 @default.
- W3130551496 cites W3017372248 @default.
- W3130551496 cites W3025075066 @default.
- W3130551496 doi "https://doi.org/10.1007/s00256-021-03740-9" @default.
- W3130551496 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33611622" @default.
- W3130551496 hasPublicationYear "2021" @default.
- W3130551496 type Work @default.
- W3130551496 sameAs 3130551496 @default.
- W3130551496 citedByCount "11" @default.
- W3130551496 countsByYear W31305514962021 @default.
- W3130551496 countsByYear W31305514962022 @default.
- W3130551496 countsByYear W31305514962023 @default.
- W3130551496 crossrefType "journal-article" @default.
- W3130551496 hasAuthorship W3130551496A5005164520 @default.
- W3130551496 hasAuthorship W3130551496A5006318966 @default.
- W3130551496 hasAuthorship W3130551496A5012185911 @default.
- W3130551496 hasAuthorship W3130551496A5019723161 @default.
- W3130551496 hasAuthorship W3130551496A5028898347 @default.
- W3130551496 hasAuthorship W3130551496A5041684701 @default.
- W3130551496 hasAuthorship W3130551496A5084093407 @default.
- W3130551496 hasBestOaLocation W31305514961 @default.
- W3130551496 hasConcept C126322002 @default.
- W3130551496 hasConcept C126838900 @default.
- W3130551496 hasConcept C141071460 @default.
- W3130551496 hasConcept C142724271 @default.
- W3130551496 hasConcept C154945302 @default.
- W3130551496 hasConcept C204787440 @default.
- W3130551496 hasConcept C2776164576 @default.
- W3130551496 hasConcept C29694066 @default.
- W3130551496 hasConcept C36454342 @default.
- W3130551496 hasConcept C41008148 @default.
- W3130551496 hasConcept C58471807 @default.
- W3130551496 hasConcept C68312169 @default.
- W3130551496 hasConcept C71924100 @default.
- W3130551496 hasConcept C81363708 @default.
- W3130551496 hasConceptScore W3130551496C126322002 @default.
- W3130551496 hasConceptScore W3130551496C126838900 @default.
- W3130551496 hasConceptScore W3130551496C141071460 @default.
- W3130551496 hasConceptScore W3130551496C142724271 @default.
- W3130551496 hasConceptScore W3130551496C154945302 @default.
- W3130551496 hasConceptScore W3130551496C204787440 @default.
- W3130551496 hasConceptScore W3130551496C2776164576 @default.
- W3130551496 hasConceptScore W3130551496C29694066 @default.
- W3130551496 hasConceptScore W3130551496C36454342 @default.
- W3130551496 hasConceptScore W3130551496C41008148 @default.
- W3130551496 hasConceptScore W3130551496C58471807 @default.
- W3130551496 hasConceptScore W3130551496C68312169 @default.
- W3130551496 hasConceptScore W3130551496C71924100 @default.
- W3130551496 hasConceptScore W3130551496C81363708 @default.
- W3130551496 hasIssue "2" @default.
- W3130551496 hasLocation W31305514961 @default.
- W3130551496 hasLocation W31305514962 @default.
- W3130551496 hasLocation W31305514963 @default.
- W3130551496 hasLocation W31305514964 @default.
- W3130551496 hasOpenAccess W3130551496 @default.
- W3130551496 hasPrimaryLocation W31305514961 @default.
- W3130551496 hasRelatedWork W1902427662 @default.
- W3130551496 hasRelatedWork W1978364384 @default.
- W3130551496 hasRelatedWork W2128878586 @default.
- W3130551496 hasRelatedWork W2169904250 @default.
- W3130551496 hasRelatedWork W2319489433 @default.
- W3130551496 hasRelatedWork W2346491184 @default.
- W3130551496 hasRelatedWork W2579996474 @default.
- W3130551496 hasRelatedWork W4242815383 @default.