Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130571284> ?p ?o ?g. }
- W3130571284 endingPage "113523" @default.
- W3130571284 startingPage "113523" @default.
- W3130571284 abstract "An important business domain that relies heavily on advanced statistical- and machine learning algorithms to support operational decision-making is customer retention management. Customer churn prediction is a crucial tool to support customer retention. It allows an early identification of customers who are at risk to abandon the company and provides the ability to gain insights into why customers are at risk. Hence, customer churn prediction models should complement predictive performance with model insights. Inspired by their ability to reconcile strong predictive performance and interpretability, this study introduces rule ensembles and their extension, spline-rule ensembles, as a promising family of classification algorithms to the customer churn prediction domain. Spline-rule ensembles combine the flexibility of a tree-based ensemble classifier with the simplicity of regression analysis. They do, however, neglect the relatedness between potentially conflicting model components which can introduce unnecessary complexity in the models and compromises model interpretability. To tackle this issue, a novel algorithmic extension, spline-rule ensembles with sparse group lasso regularization (SRE-SGL) is proposed to enhance interpretability through structured regularization. Experiments on fourteen real-world customer churn data sets in different industries (i) demonstrate the superior predictive performance of spline-rule ensembles with sparse group lasso over a set well yet powerful benchmark methods in terms of AUC and top decile lift; (ii) show that spline-rule ensembles with sparse group lasso regularization significantly outperform conventional rule ensembles whilst performing at least as well as conventional spline-rule ensembles; and (iii) illustrate the interpretable nature of a spline-rule ensemble model and the advantage of structured regularization in SRE-SGL by means of a case study on customer churn prediction for a telecommunications company." @default.
- W3130571284 created "2021-03-01" @default.
- W3130571284 creator A5030823245 @default.
- W3130571284 creator A5030886962 @default.
- W3130571284 date "2021-11-01" @default.
- W3130571284 modified "2023-10-18" @default.
- W3130571284 title "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling" @default.
- W3130571284 cites W1597299474 @default.
- W3130571284 cites W1966021193 @default.
- W3130571284 cites W1967465096 @default.
- W3130571284 cites W1987371344 @default.
- W3130571284 cites W198744195 @default.
- W3130571284 cites W1988160630 @default.
- W3130571284 cites W2009499611 @default.
- W3130571284 cites W2017396468 @default.
- W3130571284 cites W2044502961 @default.
- W3130571284 cites W2048231652 @default.
- W3130571284 cites W2048755952 @default.
- W3130571284 cites W2054640944 @default.
- W3130571284 cites W2057292389 @default.
- W3130571284 cites W2061670499 @default.
- W3130571284 cites W2063734355 @default.
- W3130571284 cites W2064253125 @default.
- W3130571284 cites W2067594023 @default.
- W3130571284 cites W2075364988 @default.
- W3130571284 cites W2086504900 @default.
- W3130571284 cites W2093162585 @default.
- W3130571284 cites W2102739522 @default.
- W3130571284 cites W2106772961 @default.
- W3130571284 cites W2123877644 @default.
- W3130571284 cites W2138019504 @default.
- W3130571284 cites W2150757437 @default.
- W3130571284 cites W2164921310 @default.
- W3130571284 cites W2165466912 @default.
- W3130571284 cites W2186071116 @default.
- W3130571284 cites W2300875245 @default.
- W3130571284 cites W2558749735 @default.
- W3130571284 cites W2615973898 @default.
- W3130571284 cites W2738004995 @default.
- W3130571284 cites W2792328488 @default.
- W3130571284 cites W2911964244 @default.
- W3130571284 cites W2963095307 @default.
- W3130571284 cites W2969701135 @default.
- W3130571284 cites W3000332379 @default.
- W3130571284 cites W3084271711 @default.
- W3130571284 cites W3123614577 @default.
- W3130571284 cites W4212883601 @default.
- W3130571284 doi "https://doi.org/10.1016/j.dss.2021.113523" @default.
- W3130571284 hasPublicationYear "2021" @default.
- W3130571284 type Work @default.
- W3130571284 sameAs 3130571284 @default.
- W3130571284 citedByCount "17" @default.
- W3130571284 countsByYear W31305712842021 @default.
- W3130571284 countsByYear W31305712842022 @default.
- W3130571284 countsByYear W31305712842023 @default.
- W3130571284 crossrefType "journal-article" @default.
- W3130571284 hasAuthorship W3130571284A5030823245 @default.
- W3130571284 hasAuthorship W3130571284A5030886962 @default.
- W3130571284 hasBestOaLocation W31305712841 @default.
- W3130571284 hasConcept C119857082 @default.
- W3130571284 hasConcept C124101348 @default.
- W3130571284 hasConcept C154945302 @default.
- W3130571284 hasConcept C2776135515 @default.
- W3130571284 hasConcept C2781067378 @default.
- W3130571284 hasConcept C41008148 @default.
- W3130571284 hasConcept C45942800 @default.
- W3130571284 hasConcept C739882 @default.
- W3130571284 hasConcept C84525736 @default.
- W3130571284 hasConceptScore W3130571284C119857082 @default.
- W3130571284 hasConceptScore W3130571284C124101348 @default.
- W3130571284 hasConceptScore W3130571284C154945302 @default.
- W3130571284 hasConceptScore W3130571284C2776135515 @default.
- W3130571284 hasConceptScore W3130571284C2781067378 @default.
- W3130571284 hasConceptScore W3130571284C41008148 @default.
- W3130571284 hasConceptScore W3130571284C45942800 @default.
- W3130571284 hasConceptScore W3130571284C739882 @default.
- W3130571284 hasConceptScore W3130571284C84525736 @default.
- W3130571284 hasLocation W31305712841 @default.
- W3130571284 hasLocation W31305712842 @default.
- W3130571284 hasLocation W31305712843 @default.
- W3130571284 hasLocation W31305712844 @default.
- W3130571284 hasLocation W31305712845 @default.
- W3130571284 hasOpenAccess W3130571284 @default.
- W3130571284 hasPrimaryLocation W31305712841 @default.
- W3130571284 hasRelatedWork W2806259446 @default.
- W3130571284 hasRelatedWork W2905433371 @default.
- W3130571284 hasRelatedWork W3136871737 @default.
- W3130571284 hasRelatedWork W4293151273 @default.
- W3130571284 hasRelatedWork W4310278675 @default.
- W3130571284 hasRelatedWork W4311431240 @default.
- W3130571284 hasRelatedWork W4312407344 @default.
- W3130571284 hasRelatedWork W4361193272 @default.
- W3130571284 hasRelatedWork W4384115502 @default.
- W3130571284 hasRelatedWork W2963326959 @default.
- W3130571284 hasVolume "150" @default.
- W3130571284 isParatext "false" @default.
- W3130571284 isRetracted "false" @default.
- W3130571284 magId "3130571284" @default.