Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130713045> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3130713045 abstract "TWe aimed to estimate respiratory changes in lung volumes (Δlung volume) using frontal and lateral dynamic chest radiography (DCR) by employing a convolutional neural network (CNN) learning approach trained and tested using the four-dimensional (4D) extended cardiac-torso (XCAT) phantom. Twenty XCAT phantoms of males (5 normal, 5 overweight, and 5 obese) and females (5 normal) were generated to obtain 4D computed tomography (CT) of a virtual patient. XCAT phantoms were projected in frontal and lateral directions. We estimated lung volumes of the XCAT phantoms using CNN learning techniques. One dataset consisted of a right- or left-half frontal view, a lateral view, and ground truth (GT) knowledge of each phantom in the same respiratory phase. Δlung volume were calculated by subtracting the lung volume estimated at the maximum exhale from that at the maximal inhale, and was compared with Δlung volume calculated from the known GT. Δlung volume was successfully estimated from frontal and lateral DCR images of XCAT phantoms by a CNN learning approach. There was a correlation for Δlung volume between GT and estimation in both lungs. There were no significant differences in the estimation error between the right and left lungs, males and females, and males having different physiques. We confirmed that DCR has potential use in the estimation of Δlung volume, which corresponds to vital capacity (VC) in pulmonary function tests (PFT). Pulmonary function could be assessed by DCR even in patients with infectious diseases who can’t do PFT using a spirometer." @default.
- W3130713045 created "2021-03-01" @default.
- W3130713045 creator A5005684560 @default.
- W3130713045 creator A5021555712 @default.
- W3130713045 creator A5046139669 @default.
- W3130713045 creator A5085824696 @default.
- W3130713045 creator A5076208686 @default.
- W3130713045 date "2021-02-15" @default.
- W3130713045 modified "2023-09-25" @default.
- W3130713045 title "Estimation of lung volume changes from frontal and lateral views of dynamic chest radiography using a convolutional neural network model: a computational phantom study" @default.
- W3130713045 doi "https://doi.org/10.1117/12.2579948" @default.
- W3130713045 hasPublicationYear "2021" @default.
- W3130713045 type Work @default.
- W3130713045 sameAs 3130713045 @default.
- W3130713045 citedByCount "0" @default.
- W3130713045 crossrefType "proceedings-article" @default.
- W3130713045 hasAuthorship W3130713045A5005684560 @default.
- W3130713045 hasAuthorship W3130713045A5021555712 @default.
- W3130713045 hasAuthorship W3130713045A5046139669 @default.
- W3130713045 hasAuthorship W3130713045A5076208686 @default.
- W3130713045 hasAuthorship W3130713045A5085824696 @default.
- W3130713045 hasConcept C104293457 @default.
- W3130713045 hasConcept C105702510 @default.
- W3130713045 hasConcept C126322002 @default.
- W3130713045 hasConcept C126838900 @default.
- W3130713045 hasConcept C143409427 @default.
- W3130713045 hasConcept C154945302 @default.
- W3130713045 hasConcept C27101514 @default.
- W3130713045 hasConcept C2777714996 @default.
- W3130713045 hasConcept C2989005 @default.
- W3130713045 hasConcept C36454342 @default.
- W3130713045 hasConcept C41008148 @default.
- W3130713045 hasConcept C523889960 @default.
- W3130713045 hasConcept C71924100 @default.
- W3130713045 hasConcept C81363708 @default.
- W3130713045 hasConceptScore W3130713045C104293457 @default.
- W3130713045 hasConceptScore W3130713045C105702510 @default.
- W3130713045 hasConceptScore W3130713045C126322002 @default.
- W3130713045 hasConceptScore W3130713045C126838900 @default.
- W3130713045 hasConceptScore W3130713045C143409427 @default.
- W3130713045 hasConceptScore W3130713045C154945302 @default.
- W3130713045 hasConceptScore W3130713045C27101514 @default.
- W3130713045 hasConceptScore W3130713045C2777714996 @default.
- W3130713045 hasConceptScore W3130713045C2989005 @default.
- W3130713045 hasConceptScore W3130713045C36454342 @default.
- W3130713045 hasConceptScore W3130713045C41008148 @default.
- W3130713045 hasConceptScore W3130713045C523889960 @default.
- W3130713045 hasConceptScore W3130713045C71924100 @default.
- W3130713045 hasConceptScore W3130713045C81363708 @default.
- W3130713045 hasLocation W31307130451 @default.
- W3130713045 hasOpenAccess W3130713045 @default.
- W3130713045 hasPrimaryLocation W31307130451 @default.
- W3130713045 hasRelatedWork W10014581 @default.
- W3130713045 hasRelatedWork W10580153 @default.
- W3130713045 hasRelatedWork W12671366 @default.
- W3130713045 hasRelatedWork W17030887 @default.
- W3130713045 hasRelatedWork W4491607 @default.
- W3130713045 hasRelatedWork W7369532 @default.
- W3130713045 hasRelatedWork W7900276 @default.
- W3130713045 hasRelatedWork W9397538 @default.
- W3130713045 hasRelatedWork W18310349 @default.
- W3130713045 hasRelatedWork W21515206 @default.
- W3130713045 isParatext "false" @default.
- W3130713045 isRetracted "false" @default.
- W3130713045 magId "3130713045" @default.
- W3130713045 workType "article" @default.