Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130800274> ?p ?o ?g. }
- W3130800274 endingPage "e1008767" @default.
- W3130800274 startingPage "e1008767" @default.
- W3130800274 abstract "N6-methyladenine (6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for under-standing of 6mA’s biological functions. However, the existing experimental techniques for detecting 6mA sites are cost-ineffective, which implies the great need of developing new computational methods for this problem. In this paper, we developed, without requiring any prior knowledge of 6mA and manually crafted sequence features, a deep learning framework named Deep6mA to identify DNA 6mA sites, and its performance is superior to other DNA 6mA prediction tools. Specifically, the 5-fold cross-validation on a benchmark dataset of rice gives the sensitivity and specificity of Deep6mA as 92.96% and 95.06%, respectively, and the overall prediction accuracy is 94%. Importantly, we find that the sequences with 6mA sites share similar patterns across different species. The model trained with rice data predicts well the 6mA sites of other three species: Arabidopsis thaliana , Fragaria vesca and Rosa chinensis with a prediction accuracy over 90%. In addition, we find that (1) 6mA tends to occur at GAGG motifs, which means the sequence near the 6mA site may be conservative; (2) 6mA is enriched in the TATA box of the promoter, which may be the main source of its regulating downstream gene expression." @default.
- W3130800274 created "2021-03-01" @default.
- W3130800274 creator A5014554970 @default.
- W3130800274 creator A5014863730 @default.
- W3130800274 creator A5024796378 @default.
- W3130800274 creator A5028884115 @default.
- W3130800274 creator A5039775525 @default.
- W3130800274 creator A5051608865 @default.
- W3130800274 creator A5060018541 @default.
- W3130800274 creator A5074160086 @default.
- W3130800274 date "2021-02-18" @default.
- W3130800274 modified "2023-10-15" @default.
- W3130800274 title "Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species" @default.
- W3130800274 cites W1019830208 @default.
- W3130800274 cites W1561143138 @default.
- W3130800274 cites W1974527579 @default.
- W3130800274 cites W1976661499 @default.
- W3130800274 cites W1984783889 @default.
- W3130800274 cites W1987735941 @default.
- W3130800274 cites W1988480619 @default.
- W3130800274 cites W2010687513 @default.
- W3130800274 cites W2056196348 @default.
- W3130800274 cites W2072139119 @default.
- W3130800274 cites W2073199618 @default.
- W3130800274 cites W2104367324 @default.
- W3130800274 cites W2129329277 @default.
- W3130800274 cites W2145946091 @default.
- W3130800274 cites W2164052908 @default.
- W3130800274 cites W2198606573 @default.
- W3130800274 cites W2250644439 @default.
- W3130800274 cites W2259119153 @default.
- W3130800274 cites W2345512687 @default.
- W3130800274 cites W2508429489 @default.
- W3130800274 cites W2549247408 @default.
- W3130800274 cites W2884715962 @default.
- W3130800274 cites W2910591656 @default.
- W3130800274 cites W2949348780 @default.
- W3130800274 cites W2951845617 @default.
- W3130800274 cites W2965667464 @default.
- W3130800274 cites W2967387109 @default.
- W3130800274 cites W2972691905 @default.
- W3130800274 cites W2979999916 @default.
- W3130800274 cites W2980479442 @default.
- W3130800274 cites W3009776949 @default.
- W3130800274 doi "https://doi.org/10.1371/journal.pcbi.1008767" @default.
- W3130800274 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7924747" @default.
- W3130800274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33600435" @default.
- W3130800274 hasPublicationYear "2021" @default.
- W3130800274 type Work @default.
- W3130800274 sameAs 3130800274 @default.
- W3130800274 citedByCount "26" @default.
- W3130800274 countsByYear W31308002742021 @default.
- W3130800274 countsByYear W31308002742022 @default.
- W3130800274 countsByYear W31308002742023 @default.
- W3130800274 crossrefType "journal-article" @default.
- W3130800274 hasAuthorship W3130800274A5014554970 @default.
- W3130800274 hasAuthorship W3130800274A5014863730 @default.
- W3130800274 hasAuthorship W3130800274A5024796378 @default.
- W3130800274 hasAuthorship W3130800274A5028884115 @default.
- W3130800274 hasAuthorship W3130800274A5039775525 @default.
- W3130800274 hasAuthorship W3130800274A5051608865 @default.
- W3130800274 hasAuthorship W3130800274A5060018541 @default.
- W3130800274 hasAuthorship W3130800274A5074160086 @default.
- W3130800274 hasBestOaLocation W31308002741 @default.
- W3130800274 hasConcept C101762097 @default.
- W3130800274 hasConcept C104317684 @default.
- W3130800274 hasConcept C108583219 @default.
- W3130800274 hasConcept C143065580 @default.
- W3130800274 hasConcept C150194340 @default.
- W3130800274 hasConcept C154945302 @default.
- W3130800274 hasConcept C17757408 @default.
- W3130800274 hasConcept C185798385 @default.
- W3130800274 hasConcept C205649164 @default.
- W3130800274 hasConcept C2775988993 @default.
- W3130800274 hasConcept C41008148 @default.
- W3130800274 hasConcept C51679486 @default.
- W3130800274 hasConcept C54355233 @default.
- W3130800274 hasConcept C552990157 @default.
- W3130800274 hasConcept C58640448 @default.
- W3130800274 hasConcept C60644358 @default.
- W3130800274 hasConcept C65888428 @default.
- W3130800274 hasConcept C70721500 @default.
- W3130800274 hasConcept C86803240 @default.
- W3130800274 hasConceptScore W3130800274C101762097 @default.
- W3130800274 hasConceptScore W3130800274C104317684 @default.
- W3130800274 hasConceptScore W3130800274C108583219 @default.
- W3130800274 hasConceptScore W3130800274C143065580 @default.
- W3130800274 hasConceptScore W3130800274C150194340 @default.
- W3130800274 hasConceptScore W3130800274C154945302 @default.
- W3130800274 hasConceptScore W3130800274C17757408 @default.
- W3130800274 hasConceptScore W3130800274C185798385 @default.
- W3130800274 hasConceptScore W3130800274C205649164 @default.
- W3130800274 hasConceptScore W3130800274C2775988993 @default.
- W3130800274 hasConceptScore W3130800274C41008148 @default.
- W3130800274 hasConceptScore W3130800274C51679486 @default.
- W3130800274 hasConceptScore W3130800274C54355233 @default.
- W3130800274 hasConceptScore W3130800274C552990157 @default.
- W3130800274 hasConceptScore W3130800274C58640448 @default.