Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130865720> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3130865720 endingPage "64" @default.
- W3130865720 startingPage "55" @default.
- W3130865720 abstract "One of the most critical issues in human-computer interaction applications is recognizing human emotions based on speech. In recent years, the challenging problem of cross-corpus speech emotion recognition (SER) has generated extensive research. Nevertheless, the domain discrepancy between training data and testing data remains a major challenge to achieving improved system performance. This paper introduces a novel multi-scale discrepancy adversarial (MSDA) network for conducting multiple timescales domain adaptation for cross-corpus SER, i. e., integrating domain discriminators of hierarchical levels into the emotion recognition framework to mitigate the gap between the source and target domains. Specifically, we extract two kinds of speech features, i.e., handcraft features and deep features, from three timescales of global, local, and hybrid levels. In each timescale, the domain discriminator and the emotion classifier compete against each other to learn features that minimize the discrepancy between the two domains by fooling the discriminator. Extensive experiments on cross-corpus and cross-language SER were conducted on a combination dataset that combines one Chinese dataset and two English datasets commonly used in SER. The MSDA is affected by the strong discriminate power provided by the adversarial process, where three discriminators are working in tandem with an emotion classifier. Accordingly, the MSDA achieves the best performance over all other baseline methods. The proposed architecture was tested on a combination of one Chinese and two English datasets. The experimental results demonstrate the superiority of our powerful discriminative model for solving cross-corpus SER." @default.
- W3130865720 created "2021-03-01" @default.
- W3130865720 creator A5048826252 @default.
- W3130865720 creator A5062854541 @default.
- W3130865720 creator A5071074705 @default.
- W3130865720 date "2021-02-01" @default.
- W3130865720 modified "2023-09-25" @default.
- W3130865720 title "Learning long-term temporal contexts using skip RNN for continuous emotion recognition" @default.
- W3130865720 cites W2026243162 @default.
- W3130865720 cites W2153822685 @default.
- W3130865720 cites W2239141610 @default.
- W3130865720 cites W2313339984 @default.
- W3130865720 cites W2613375858 @default.
- W3130865720 doi "https://doi.org/10.1016/j.vrih.2020.11.005" @default.
- W3130865720 hasPublicationYear "2021" @default.
- W3130865720 type Work @default.
- W3130865720 sameAs 3130865720 @default.
- W3130865720 citedByCount "6" @default.
- W3130865720 countsByYear W31308657202022 @default.
- W3130865720 countsByYear W31308657202023 @default.
- W3130865720 crossrefType "journal-article" @default.
- W3130865720 hasAuthorship W3130865720A5048826252 @default.
- W3130865720 hasAuthorship W3130865720A5062854541 @default.
- W3130865720 hasAuthorship W3130865720A5071074705 @default.
- W3130865720 hasBestOaLocation W31308657201 @default.
- W3130865720 hasConcept C119857082 @default.
- W3130865720 hasConcept C153180895 @default.
- W3130865720 hasConcept C154945302 @default.
- W3130865720 hasConcept C204321447 @default.
- W3130865720 hasConcept C2777438025 @default.
- W3130865720 hasConcept C2779803651 @default.
- W3130865720 hasConcept C28490314 @default.
- W3130865720 hasConcept C37736160 @default.
- W3130865720 hasConcept C41008148 @default.
- W3130865720 hasConcept C76155785 @default.
- W3130865720 hasConcept C94915269 @default.
- W3130865720 hasConcept C95623464 @default.
- W3130865720 hasConcept C97931131 @default.
- W3130865720 hasConceptScore W3130865720C119857082 @default.
- W3130865720 hasConceptScore W3130865720C153180895 @default.
- W3130865720 hasConceptScore W3130865720C154945302 @default.
- W3130865720 hasConceptScore W3130865720C204321447 @default.
- W3130865720 hasConceptScore W3130865720C2777438025 @default.
- W3130865720 hasConceptScore W3130865720C2779803651 @default.
- W3130865720 hasConceptScore W3130865720C28490314 @default.
- W3130865720 hasConceptScore W3130865720C37736160 @default.
- W3130865720 hasConceptScore W3130865720C41008148 @default.
- W3130865720 hasConceptScore W3130865720C76155785 @default.
- W3130865720 hasConceptScore W3130865720C94915269 @default.
- W3130865720 hasConceptScore W3130865720C95623464 @default.
- W3130865720 hasConceptScore W3130865720C97931131 @default.
- W3130865720 hasIssue "1" @default.
- W3130865720 hasLocation W31308657201 @default.
- W3130865720 hasLocation W31308657202 @default.
- W3130865720 hasOpenAccess W3130865720 @default.
- W3130865720 hasPrimaryLocation W31308657201 @default.
- W3130865720 hasRelatedWork W2112343299 @default.
- W3130865720 hasRelatedWork W2404514746 @default.
- W3130865720 hasRelatedWork W2803949585 @default.
- W3130865720 hasRelatedWork W2905846897 @default.
- W3130865720 hasRelatedWork W2945801692 @default.
- W3130865720 hasRelatedWork W2952541330 @default.
- W3130865720 hasRelatedWork W3130865720 @default.
- W3130865720 hasRelatedWork W3182589594 @default.
- W3130865720 hasRelatedWork W4212775509 @default.
- W3130865720 hasRelatedWork W4297841589 @default.
- W3130865720 hasVolume "3" @default.
- W3130865720 isParatext "false" @default.
- W3130865720 isRetracted "false" @default.
- W3130865720 magId "3130865720" @default.
- W3130865720 workType "article" @default.