Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130892994> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3130892994 abstract "It is common that people prefer to edit photos before posting, and the aesthetic assessment of edited photos is increasingly important, which has applications in photo recommendation, retrieval, and automatic beautification. To our knowledge, this is the first attempt to study the problem of aesthetic assessment for edited photos. Since no related public dataset is available, we create a large-scale Edited photo Aesthetic Data set (EAD) including 25,000 images by incorporating a diversity of personal judgments from the photo-sharing platform. Moreover, in this paper, we propose a new deep learning framework MSNet to obtain the composition characteristics of the edited photos in aesthetic assessment. Specifically, there are two main modules in MSNet. The global composition information describing the overall picture is extracted through the Multi-level feature Fusion Module while the Spatial Attention-aware Module is used to get the local composition information expressing the dependence between visual elements. Finally, the experimental results show the superiority of our proposed approach against the traditional methods designed for non-edited photos." @default.
- W3130892994 created "2021-03-01" @default.
- W3130892994 creator A5005774249 @default.
- W3130892994 creator A5006393985 @default.
- W3130892994 creator A5014918016 @default.
- W3130892994 creator A5055082886 @default.
- W3130892994 date "2020-12-11" @default.
- W3130892994 modified "2023-10-16" @default.
- W3130892994 title "Composition-aware Learning for Aesthetic Assessment of Edited Photos" @default.
- W3130892994 cites W1532550279 @default.
- W3130892994 cites W1903029394 @default.
- W3130892994 cites W2009678853 @default.
- W3130892994 cites W2078807908 @default.
- W3130892994 cites W2194775991 @default.
- W3130892994 cites W2217895792 @default.
- W3130892994 cites W2347880541 @default.
- W3130892994 cites W2412782625 @default.
- W3130892994 cites W2417288846 @default.
- W3130892994 cites W2467531333 @default.
- W3130892994 cites W2530739118 @default.
- W3130892994 cites W2802572676 @default.
- W3130892994 cites W2955058313 @default.
- W3130892994 cites W2963429116 @default.
- W3130892994 cites W2963446712 @default.
- W3130892994 cites W3025478955 @default.
- W3130892994 doi "https://doi.org/10.1109/iccc51575.2020.9345309" @default.
- W3130892994 hasPublicationYear "2020" @default.
- W3130892994 type Work @default.
- W3130892994 sameAs 3130892994 @default.
- W3130892994 citedByCount "0" @default.
- W3130892994 crossrefType "proceedings-article" @default.
- W3130892994 hasAuthorship W3130892994A5005774249 @default.
- W3130892994 hasAuthorship W3130892994A5006393985 @default.
- W3130892994 hasAuthorship W3130892994A5014918016 @default.
- W3130892994 hasAuthorship W3130892994A5055082886 @default.
- W3130892994 hasConcept C124952713 @default.
- W3130892994 hasConcept C127413603 @default.
- W3130892994 hasConcept C138885662 @default.
- W3130892994 hasConcept C142362112 @default.
- W3130892994 hasConcept C147176958 @default.
- W3130892994 hasConcept C154945302 @default.
- W3130892994 hasConcept C177264268 @default.
- W3130892994 hasConcept C199360897 @default.
- W3130892994 hasConcept C23123220 @default.
- W3130892994 hasConcept C2776401178 @default.
- W3130892994 hasConcept C2777972131 @default.
- W3130892994 hasConcept C40231798 @default.
- W3130892994 hasConcept C41008148 @default.
- W3130892994 hasConcept C41895202 @default.
- W3130892994 hasConceptScore W3130892994C124952713 @default.
- W3130892994 hasConceptScore W3130892994C127413603 @default.
- W3130892994 hasConceptScore W3130892994C138885662 @default.
- W3130892994 hasConceptScore W3130892994C142362112 @default.
- W3130892994 hasConceptScore W3130892994C147176958 @default.
- W3130892994 hasConceptScore W3130892994C154945302 @default.
- W3130892994 hasConceptScore W3130892994C177264268 @default.
- W3130892994 hasConceptScore W3130892994C199360897 @default.
- W3130892994 hasConceptScore W3130892994C23123220 @default.
- W3130892994 hasConceptScore W3130892994C2776401178 @default.
- W3130892994 hasConceptScore W3130892994C2777972131 @default.
- W3130892994 hasConceptScore W3130892994C40231798 @default.
- W3130892994 hasConceptScore W3130892994C41008148 @default.
- W3130892994 hasConceptScore W3130892994C41895202 @default.
- W3130892994 hasLocation W31308929941 @default.
- W3130892994 hasOpenAccess W3130892994 @default.
- W3130892994 hasPrimaryLocation W31308929941 @default.
- W3130892994 hasRelatedWork W1509467138 @default.
- W3130892994 hasRelatedWork W2115485936 @default.
- W3130892994 hasRelatedWork W2128719260 @default.
- W3130892994 hasRelatedWork W2144190808 @default.
- W3130892994 hasRelatedWork W2153015554 @default.
- W3130892994 hasRelatedWork W2357241418 @default.
- W3130892994 hasRelatedWork W2366644548 @default.
- W3130892994 hasRelatedWork W2376314740 @default.
- W3130892994 hasRelatedWork W2384888906 @default.
- W3130892994 hasRelatedWork W3107474891 @default.
- W3130892994 isParatext "false" @default.
- W3130892994 isRetracted "false" @default.
- W3130892994 magId "3130892994" @default.
- W3130892994 workType "article" @default.