Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130951558> ?p ?o ?g. }
- W3130951558 endingPage "112353" @default.
- W3130951558 startingPage "112353" @default.
- W3130951558 abstract "As an essential feature of plant autotrophy, Nitrogen (N) is the major nutrient affecting plant growth in terrestrial ecosystems, thus is of not only fundamental scientific interest, but also a crucial factor in crop productivity. Timely non-destructive monitoring of canopy nitrogen concentration (N%) demands fast and highly accurate estimation, which is often quantified using spectroscopic analyses in the 400—2500 nm spectral region. However, extracting a set of useful spectral absorption features from canopy spectra to determine N% remains challenging due to confounding canopy architecture. Deep Learning as a statistical learning technique is useful to extract biochemical information from canopy spectra. We evaluated the performance of a one-dimensional convolutional neural network (1D-CNN) and compared it with two state-of-the-art methods: partial least squares regression (PLSR) and gaussian process regression (GPR). We utilized a large and diverse in-field multi-season (autumn, winter, spring and summer) spectral database (n = 7014) over 8 years (2009–2016) of dairy and hill country farms across New Zealand to develop season specific and spectral-region specific (VNIR and/or SWIR) 1D-CNN models. Results on the independent validation dataset (not used to train the model) showed that the 1D-CNN model provided higher accuracy (R2 = 0.72; nRMSE% = 14) than PLSR (R2 = 0.54; nRMSE% = 19) and GPR (with R2 = 0.62; nRMSE% = 16). Season specific models based on 1D-CNN indicated apparent differences (14 ≤ nRMSE ≤19 for the test dataset), while the performance of all seasons combined model was remained higher for the test dataset (nRMSE% = 14). The full spectral range model showed higher accuracy than the spectral region-specific models (VNIR and SWIR alone) (15.8 ≤ nRMSE ≤18.5). Additionally, predictions derived using 1D-CNN were more precise (less uncertain) with <0.12 mean standard deviation (uncertainty intervals) than PLSR (0.31) and GPR (0.16). This study demonstrated the potential of 1D-CNN as an alternative to conventional techniques to determine the N% from canopy hyperspectral spectra." @default.
- W3130951558 created "2021-03-01" @default.
- W3130951558 creator A5016705517 @default.
- W3130951558 creator A5020140102 @default.
- W3130951558 creator A5075806930 @default.
- W3130951558 creator A5083603760 @default.
- W3130951558 date "2021-05-01" @default.
- W3130951558 modified "2023-10-18" @default.
- W3130951558 title "Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network" @default.
- W3130951558 cites W13340444 @default.
- W3130951558 cites W1676255690 @default.
- W3130951558 cites W1827322724 @default.
- W3130951558 cites W1961589406 @default.
- W3130951558 cites W1969177710 @default.
- W3130951558 cites W1971838942 @default.
- W3130951558 cites W1972805853 @default.
- W3130951558 cites W1975859073 @default.
- W3130951558 cites W1977084785 @default.
- W3130951558 cites W1982865066 @default.
- W3130951558 cites W1991051512 @default.
- W3130951558 cites W1999373227 @default.
- W3130951558 cites W2000485836 @default.
- W3130951558 cites W2000911998 @default.
- W3130951558 cites W2001179019 @default.
- W3130951558 cites W2015799298 @default.
- W3130951558 cites W2024039740 @default.
- W3130951558 cites W2033816026 @default.
- W3130951558 cites W2039768055 @default.
- W3130951558 cites W2046404820 @default.
- W3130951558 cites W2051011878 @default.
- W3130951558 cites W2051550855 @default.
- W3130951558 cites W2055789139 @default.
- W3130951558 cites W2066612219 @default.
- W3130951558 cites W2073503722 @default.
- W3130951558 cites W2080828445 @default.
- W3130951558 cites W2097018019 @default.
- W3130951558 cites W2102160343 @default.
- W3130951558 cites W2123386011 @default.
- W3130951558 cites W2124937378 @default.
- W3130951558 cites W2127049470 @default.
- W3130951558 cites W2148685117 @default.
- W3130951558 cites W2149081460 @default.
- W3130951558 cites W2150853404 @default.
- W3130951558 cites W2166660987 @default.
- W3130951558 cites W2167881994 @default.
- W3130951558 cites W2170909719 @default.
- W3130951558 cites W2332095603 @default.
- W3130951558 cites W2401138355 @default.
- W3130951558 cites W2404939661 @default.
- W3130951558 cites W2588000623 @default.
- W3130951558 cites W2616754845 @default.
- W3130951558 cites W2765275914 @default.
- W3130951558 cites W2772452219 @default.
- W3130951558 cites W2808166809 @default.
- W3130951558 cites W2808198652 @default.
- W3130951558 cites W2883273084 @default.
- W3130951558 cites W2902505403 @default.
- W3130951558 cites W2919115771 @default.
- W3130951558 cites W2951230751 @default.
- W3130951558 cites W2951965145 @default.
- W3130951558 cites W2966358285 @default.
- W3130951558 cites W2969754063 @default.
- W3130951558 cites W2971769415 @default.
- W3130951558 cites W3010799433 @default.
- W3130951558 cites W3010955769 @default.
- W3130951558 cites W3028969457 @default.
- W3130951558 cites W3032271083 @default.
- W3130951558 cites W3095491581 @default.
- W3130951558 cites W3100157715 @default.
- W3130951558 cites W36135414 @default.
- W3130951558 cites W4250503569 @default.
- W3130951558 cites W633320881 @default.
- W3130951558 doi "https://doi.org/10.1016/j.rse.2021.112353" @default.
- W3130951558 hasPublicationYear "2021" @default.
- W3130951558 type Work @default.
- W3130951558 sameAs 3130951558 @default.
- W3130951558 citedByCount "44" @default.
- W3130951558 countsByYear W31309515582021 @default.
- W3130951558 countsByYear W31309515582022 @default.
- W3130951558 countsByYear W31309515582023 @default.
- W3130951558 crossrefType "journal-article" @default.
- W3130951558 hasAuthorship W3130951558A5016705517 @default.
- W3130951558 hasAuthorship W3130951558A5020140102 @default.
- W3130951558 hasAuthorship W3130951558A5075806930 @default.
- W3130951558 hasAuthorship W3130951558A5083603760 @default.
- W3130951558 hasConcept C101000010 @default.
- W3130951558 hasConcept C119857082 @default.
- W3130951558 hasConcept C137660486 @default.
- W3130951558 hasConcept C154945302 @default.
- W3130951558 hasConcept C159078339 @default.
- W3130951558 hasConcept C18903297 @default.
- W3130951558 hasConcept C205649164 @default.
- W3130951558 hasConcept C22354355 @default.
- W3130951558 hasConcept C39432304 @default.
- W3130951558 hasConcept C41008148 @default.
- W3130951558 hasConcept C5457282 @default.
- W3130951558 hasConcept C62649853 @default.
- W3130951558 hasConcept C6557445 @default.