Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131024162> ?p ?o ?g. }
- W3131024162 endingPage "1596" @default.
- W3131024162 startingPage "1565" @default.
- W3131024162 abstract "Abstract Recently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence (CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function, penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms." @default.
- W3131024162 created "2021-03-01" @default.
- W3131024162 creator A5004794906 @default.
- W3131024162 creator A5080691948 @default.
- W3131024162 date "2021-02-18" @default.
- W3131024162 modified "2023-09-27" @default.
- W3131024162 title "Cohort intelligence with self-adaptive penalty function approach hybridized with colliding bodies optimization algorithm for discrete and mixed variable constrained problems" @default.
- W3131024162 cites W1460294274 @default.
- W3131024162 cites W1834895773 @default.
- W3131024162 cites W1882092794 @default.
- W3131024162 cites W1888960377 @default.
- W3131024162 cites W1965049171 @default.
- W3131024162 cites W1965824590 @default.
- W3131024162 cites W1967199158 @default.
- W3131024162 cites W1968370297 @default.
- W3131024162 cites W1973346115 @default.
- W3131024162 cites W1977065655 @default.
- W3131024162 cites W1978157509 @default.
- W3131024162 cites W1985121026 @default.
- W3131024162 cites W1989800021 @default.
- W3131024162 cites W1990031458 @default.
- W3131024162 cites W1991204511 @default.
- W3131024162 cites W1997190837 @default.
- W3131024162 cites W1999284878 @default.
- W3131024162 cites W2003751475 @default.
- W3131024162 cites W2003890325 @default.
- W3131024162 cites W2005040377 @default.
- W3131024162 cites W2007351764 @default.
- W3131024162 cites W2007779276 @default.
- W3131024162 cites W2008166887 @default.
- W3131024162 cites W2013023797 @default.
- W3131024162 cites W2017398816 @default.
- W3131024162 cites W2022882963 @default.
- W3131024162 cites W2023095371 @default.
- W3131024162 cites W2025500642 @default.
- W3131024162 cites W2027545544 @default.
- W3131024162 cites W2029846254 @default.
- W3131024162 cites W2030310352 @default.
- W3131024162 cites W2034988449 @default.
- W3131024162 cites W2039577332 @default.
- W3131024162 cites W2049653466 @default.
- W3131024162 cites W2055472199 @default.
- W3131024162 cites W2057586259 @default.
- W3131024162 cites W2057633737 @default.
- W3131024162 cites W2061001542 @default.
- W3131024162 cites W2069375473 @default.
- W3131024162 cites W2079543984 @default.
- W3131024162 cites W2091638274 @default.
- W3131024162 cites W2093505886 @default.
- W3131024162 cites W2096218963 @default.
- W3131024162 cites W2099951519 @default.
- W3131024162 cites W2105797904 @default.
- W3131024162 cites W2119700045 @default.
- W3131024162 cites W2128105951 @default.
- W3131024162 cites W2135879356 @default.
- W3131024162 cites W2136011866 @default.
- W3131024162 cites W2141343575 @default.
- W3131024162 cites W2143912934 @default.
- W3131024162 cites W2145479420 @default.
- W3131024162 cites W2151777658 @default.
- W3131024162 cites W2166028204 @default.
- W3131024162 cites W2167489714 @default.
- W3131024162 cites W2173985512 @default.
- W3131024162 cites W2175677697 @default.
- W3131024162 cites W2245763252 @default.
- W3131024162 cites W2500548883 @default.
- W3131024162 cites W2511284938 @default.
- W3131024162 cites W2523047691 @default.
- W3131024162 cites W2539286040 @default.
- W3131024162 cites W2618778734 @default.
- W3131024162 cites W2631347859 @default.
- W3131024162 cites W2768434535 @default.
- W3131024162 cites W2790066680 @default.
- W3131024162 cites W2914264282 @default.
- W3131024162 cites W3171887366 @default.
- W3131024162 cites W4242438026 @default.
- W3131024162 cites W4252715873 @default.
- W3131024162 cites W2344108980 @default.
- W3131024162 doi "https://doi.org/10.1007/s40747-021-00283-3" @default.
- W3131024162 hasPublicationYear "2021" @default.
- W3131024162 type Work @default.
- W3131024162 sameAs 3131024162 @default.
- W3131024162 citedByCount "14" @default.
- W3131024162 countsByYear W31310241622022 @default.
- W3131024162 countsByYear W31310241622023 @default.
- W3131024162 crossrefType "journal-article" @default.
- W3131024162 hasAuthorship W3131024162A5004794906 @default.
- W3131024162 hasAuthorship W3131024162A5080691948 @default.
- W3131024162 hasBestOaLocation W31310241621 @default.
- W3131024162 hasConcept C102366305 @default.
- W3131024162 hasConcept C105795698 @default.
- W3131024162 hasConcept C11413529 @default.
- W3131024162 hasConcept C114614502 @default.
- W3131024162 hasConcept C117251300 @default.
- W3131024162 hasConcept C121332964 @default.
- W3131024162 hasConcept C126255220 @default.
- W3131024162 hasConcept C134306372 @default.
- W3131024162 hasConcept C137836250 @default.