Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131037996> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W3131037996 abstract "Most existing automated requirements formalisation techniques require system engineers to (re)write their requirements using a set of predefined requirement templates with a fixed structure and known semantics to simplify the formalisation process. However, these techniques require understanding and memorising requirement templates, which are usually fixed format, limit requirements captured, and do not allow capture of more diverse requirements. To address these limitations, we need a reference model that captures key requirement details regardless of their structure, format or order. Then, using NLP techniques we can transform textual requirements into the reference model. Finally, using a suite of transformation rules we can then convert these requirements into formal notations. In this paper, we introduce the first and key step in this process, a Requirement Capturing Model (RCM) - as a reference model - to model the key elements of a system requirement regardless of their format, or order. We evaluated the robustness of the RCM model compared to 15 existing requirements representation approaches and a benchmark of 162 requirements. Our evaluation shows that RCM breakdowns support a wider range of requirements formats compared to the existing approaches. We also implemented a suite of transformation rules that transforms RCM-based requirements into temporal logic(s). In the future, we will develop NLP-based RCM extraction technique to provide end-to-end solution." @default.
- W3131037996 created "2021-03-01" @default.
- W3131037996 creator A5000097766 @default.
- W3131037996 creator A5008898830 @default.
- W3131037996 creator A5068173669 @default.
- W3131037996 creator A5075255387 @default.
- W3131037996 creator A5082913979 @default.
- W3131037996 date "2021-01-01" @default.
- W3131037996 modified "2023-09-24" @default.
- W3131037996 title "RCM: Requirement Capturing Model for Automated Requirements Formalisation" @default.
- W3131037996 doi "https://doi.org/10.5220/0010270401100121" @default.
- W3131037996 hasPublicationYear "2021" @default.
- W3131037996 type Work @default.
- W3131037996 sameAs 3131037996 @default.
- W3131037996 citedByCount "5" @default.
- W3131037996 countsByYear W31310379962021 @default.
- W3131037996 countsByYear W31310379962022 @default.
- W3131037996 crossrefType "proceedings-article" @default.
- W3131037996 hasAuthorship W3131037996A5000097766 @default.
- W3131037996 hasAuthorship W3131037996A5008898830 @default.
- W3131037996 hasAuthorship W3131037996A5068173669 @default.
- W3131037996 hasAuthorship W3131037996A5075255387 @default.
- W3131037996 hasAuthorship W3131037996A5082913979 @default.
- W3131037996 hasBestOaLocation W31310379961 @default.
- W3131037996 hasConcept C115903868 @default.
- W3131037996 hasConcept C41008148 @default.
- W3131037996 hasConceptScore W3131037996C115903868 @default.
- W3131037996 hasConceptScore W3131037996C41008148 @default.
- W3131037996 hasLocation W31310379961 @default.
- W3131037996 hasLocation W31310379962 @default.
- W3131037996 hasLocation W31310379963 @default.
- W3131037996 hasLocation W31310379964 @default.
- W3131037996 hasOpenAccess W3131037996 @default.
- W3131037996 hasPrimaryLocation W31310379961 @default.
- W3131037996 hasRelatedWork W1522116655 @default.
- W3131037996 hasRelatedWork W1965618767 @default.
- W3131037996 hasRelatedWork W2049775471 @default.
- W3131037996 hasRelatedWork W2093578348 @default.
- W3131037996 hasRelatedWork W2358668433 @default.
- W3131037996 hasRelatedWork W2376932109 @default.
- W3131037996 hasRelatedWork W2382290278 @default.
- W3131037996 hasRelatedWork W2390279801 @default.
- W3131037996 hasRelatedWork W2748952813 @default.
- W3131037996 hasRelatedWork W2899084033 @default.
- W3131037996 isParatext "false" @default.
- W3131037996 isRetracted "false" @default.
- W3131037996 magId "3131037996" @default.
- W3131037996 workType "article" @default.