Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131092456> ?p ?o ?g. }
- W3131092456 endingPage "120026" @default.
- W3131092456 startingPage "120026" @default.
- W3131092456 abstract "Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison. • AML is introduced to establish the optimal combination of different forecast models. • The raw data of multi-region PV plants are reconstructed through suitable operators. • SPG mechanism model is applied to generate suitable candidate operators. • GA algorithm is developed to identify optimal operator set for different PV plant." @default.
- W3131092456 created "2021-03-01" @default.
- W3131092456 creator A5014322066 @default.
- W3131092456 creator A5014929343 @default.
- W3131092456 creator A5021060526 @default.
- W3131092456 creator A5022532351 @default.
- W3131092456 creator A5038427437 @default.
- W3131092456 creator A5043860323 @default.
- W3131092456 creator A5082992994 @default.
- W3131092456 date "2021-05-01" @default.
- W3131092456 modified "2023-10-13" @default.
- W3131092456 title "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants" @default.
- W3131092456 cites W1208518215 @default.
- W3131092456 cites W1749036211 @default.
- W3131092456 cites W1948956962 @default.
- W3131092456 cites W2071884028 @default.
- W3131092456 cites W2208788516 @default.
- W3131092456 cites W2276885329 @default.
- W3131092456 cites W2284910918 @default.
- W3131092456 cites W2402682637 @default.
- W3131092456 cites W2610219179 @default.
- W3131092456 cites W2696189835 @default.
- W3131092456 cites W2766188596 @default.
- W3131092456 cites W2767559196 @default.
- W3131092456 cites W2773629498 @default.
- W3131092456 cites W2777155931 @default.
- W3131092456 cites W2794323755 @default.
- W3131092456 cites W2796179209 @default.
- W3131092456 cites W2802229284 @default.
- W3131092456 cites W2809311023 @default.
- W3131092456 cites W2896248501 @default.
- W3131092456 cites W2908932790 @default.
- W3131092456 cites W2910849319 @default.
- W3131092456 cites W2911397071 @default.
- W3131092456 cites W2920873814 @default.
- W3131092456 cites W2936183069 @default.
- W3131092456 cites W2939806510 @default.
- W3131092456 cites W2941003806 @default.
- W3131092456 cites W2955010283 @default.
- W3131092456 cites W2963928450 @default.
- W3131092456 cites W2964881638 @default.
- W3131092456 cites W2965206442 @default.
- W3131092456 cites W2966305977 @default.
- W3131092456 cites W2968516859 @default.
- W3131092456 cites W2968819665 @default.
- W3131092456 cites W2971891369 @default.
- W3131092456 cites W2988857877 @default.
- W3131092456 cites W3028287702 @default.
- W3131092456 cites W3042514389 @default.
- W3131092456 cites W3115179810 @default.
- W3131092456 doi "https://doi.org/10.1016/j.energy.2021.120026" @default.
- W3131092456 hasPublicationYear "2021" @default.
- W3131092456 type Work @default.
- W3131092456 sameAs 3131092456 @default.
- W3131092456 citedByCount "28" @default.
- W3131092456 countsByYear W31310924562021 @default.
- W3131092456 countsByYear W31310924562022 @default.
- W3131092456 countsByYear W31310924562023 @default.
- W3131092456 crossrefType "journal-article" @default.
- W3131092456 hasAuthorship W3131092456A5014322066 @default.
- W3131092456 hasAuthorship W3131092456A5014929343 @default.
- W3131092456 hasAuthorship W3131092456A5021060526 @default.
- W3131092456 hasAuthorship W3131092456A5022532351 @default.
- W3131092456 hasAuthorship W3131092456A5038427437 @default.
- W3131092456 hasAuthorship W3131092456A5043860323 @default.
- W3131092456 hasAuthorship W3131092456A5082992994 @default.
- W3131092456 hasConcept C104317684 @default.
- W3131092456 hasConcept C119599485 @default.
- W3131092456 hasConcept C119857082 @default.
- W3131092456 hasConcept C121332964 @default.
- W3131092456 hasConcept C124101348 @default.
- W3131092456 hasConcept C127413603 @default.
- W3131092456 hasConcept C154945302 @default.
- W3131092456 hasConcept C158448853 @default.
- W3131092456 hasConcept C163258240 @default.
- W3131092456 hasConcept C17020691 @default.
- W3131092456 hasConcept C177264268 @default.
- W3131092456 hasConcept C185592680 @default.
- W3131092456 hasConcept C187691185 @default.
- W3131092456 hasConcept C199360897 @default.
- W3131092456 hasConcept C2524010 @default.
- W3131092456 hasConcept C28719098 @default.
- W3131092456 hasConcept C33923547 @default.
- W3131092456 hasConcept C41008148 @default.
- W3131092456 hasConcept C41291067 @default.
- W3131092456 hasConcept C55493867 @default.
- W3131092456 hasConcept C62520636 @default.
- W3131092456 hasConcept C86339819 @default.
- W3131092456 hasConcept C8880873 @default.
- W3131092456 hasConceptScore W3131092456C104317684 @default.
- W3131092456 hasConceptScore W3131092456C119599485 @default.
- W3131092456 hasConceptScore W3131092456C119857082 @default.
- W3131092456 hasConceptScore W3131092456C121332964 @default.
- W3131092456 hasConceptScore W3131092456C124101348 @default.
- W3131092456 hasConceptScore W3131092456C127413603 @default.
- W3131092456 hasConceptScore W3131092456C154945302 @default.
- W3131092456 hasConceptScore W3131092456C158448853 @default.
- W3131092456 hasConceptScore W3131092456C163258240 @default.