Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131102893> ?p ?o ?g. }
- W3131102893 endingPage "113804" @default.
- W3131102893 startingPage "113804" @default.
- W3131102893 abstract "High entropy alloys with multi-principal elements have interested the research community due to the promising properties and tunable microstructure. In the current study, the multiphase alloy system with a mixture of solid solution and intermetallic (SS+IM) was predicted using a machine learning approach with a data set of 636 alloys. The Algorithms used are Logistic Regression, Decision Tree, Support Vector Machine (SVM) classifier, Random Forest, Gradient Boosting Classifier, and Artificial Neural Network (ANN). ANN has shown the best accuracy of more than 80% for the test data. The new alloys were prepared and characterized to verify the prediction and it is found that ANN is having more accurate prediction in the studied alloy system. Statistical analysis of the established data set reveals an overlapping boundary between the design parameters that hinders the successful prediction. Experimental data confirms the formation of new multiphase alloys." @default.
- W3131102893 created "2021-03-01" @default.
- W3131102893 creator A5003300918 @default.
- W3131102893 creator A5016244428 @default.
- W3131102893 creator A5030124421 @default.
- W3131102893 date "2021-05-01" @default.
- W3131102893 modified "2023-10-18" @default.
- W3131102893 title "Machine learning approach to predict new multiphase high entropy alloys" @default.
- W3131102893 cites W1964522838 @default.
- W3131102893 cites W1981976602 @default.
- W3131102893 cites W1995543531 @default.
- W3131102893 cites W2049589864 @default.
- W3131102893 cites W2074616700 @default.
- W3131102893 cites W2088641920 @default.
- W3131102893 cites W2102203250 @default.
- W3131102893 cites W2139086914 @default.
- W3131102893 cites W2139921601 @default.
- W3131102893 cites W2408247608 @default.
- W3131102893 cites W2471047198 @default.
- W3131102893 cites W2512171886 @default.
- W3131102893 cites W2534691303 @default.
- W3131102893 cites W2549203060 @default.
- W3131102893 cites W2772378680 @default.
- W3131102893 cites W2784203694 @default.
- W3131102893 cites W2802652936 @default.
- W3131102893 cites W2891610213 @default.
- W3131102893 cites W2903448849 @default.
- W3131102893 cites W2907871751 @default.
- W3131102893 cites W2913116269 @default.
- W3131102893 cites W2922127369 @default.
- W3131102893 cites W2938114668 @default.
- W3131102893 cites W3004227146 @default.
- W3131102893 cites W3008647172 @default.
- W3131102893 cites W3027399263 @default.
- W3131102893 cites W3027506783 @default.
- W3131102893 cites W3035249656 @default.
- W3131102893 cites W3036590998 @default.
- W3131102893 cites W3049205267 @default.
- W3131102893 cites W3097579542 @default.
- W3131102893 doi "https://doi.org/10.1016/j.scriptamat.2021.113804" @default.
- W3131102893 hasPublicationYear "2021" @default.
- W3131102893 type Work @default.
- W3131102893 sameAs 3131102893 @default.
- W3131102893 citedByCount "47" @default.
- W3131102893 countsByYear W31311028932021 @default.
- W3131102893 countsByYear W31311028932022 @default.
- W3131102893 countsByYear W31311028932023 @default.
- W3131102893 crossrefType "journal-article" @default.
- W3131102893 hasAuthorship W3131102893A5003300918 @default.
- W3131102893 hasAuthorship W3131102893A5016244428 @default.
- W3131102893 hasAuthorship W3131102893A5030124421 @default.
- W3131102893 hasConcept C106301342 @default.
- W3131102893 hasConcept C119857082 @default.
- W3131102893 hasConcept C121332964 @default.
- W3131102893 hasConcept C12267149 @default.
- W3131102893 hasConcept C154945302 @default.
- W3131102893 hasConcept C169258074 @default.
- W3131102893 hasConcept C191897082 @default.
- W3131102893 hasConcept C192562407 @default.
- W3131102893 hasConcept C27501479 @default.
- W3131102893 hasConcept C2780026712 @default.
- W3131102893 hasConcept C2780299837 @default.
- W3131102893 hasConcept C41008148 @default.
- W3131102893 hasConcept C50644808 @default.
- W3131102893 hasConcept C70153297 @default.
- W3131102893 hasConcept C84525736 @default.
- W3131102893 hasConcept C97355855 @default.
- W3131102893 hasConceptScore W3131102893C106301342 @default.
- W3131102893 hasConceptScore W3131102893C119857082 @default.
- W3131102893 hasConceptScore W3131102893C121332964 @default.
- W3131102893 hasConceptScore W3131102893C12267149 @default.
- W3131102893 hasConceptScore W3131102893C154945302 @default.
- W3131102893 hasConceptScore W3131102893C169258074 @default.
- W3131102893 hasConceptScore W3131102893C191897082 @default.
- W3131102893 hasConceptScore W3131102893C192562407 @default.
- W3131102893 hasConceptScore W3131102893C27501479 @default.
- W3131102893 hasConceptScore W3131102893C2780026712 @default.
- W3131102893 hasConceptScore W3131102893C2780299837 @default.
- W3131102893 hasConceptScore W3131102893C41008148 @default.
- W3131102893 hasConceptScore W3131102893C50644808 @default.
- W3131102893 hasConceptScore W3131102893C70153297 @default.
- W3131102893 hasConceptScore W3131102893C84525736 @default.
- W3131102893 hasConceptScore W3131102893C97355855 @default.
- W3131102893 hasLocation W31311028931 @default.
- W3131102893 hasOpenAccess W3131102893 @default.
- W3131102893 hasPrimaryLocation W31311028931 @default.
- W3131102893 hasRelatedWork W3034132578 @default.
- W3131102893 hasRelatedWork W3195168932 @default.
- W3131102893 hasRelatedWork W4212956667 @default.
- W3131102893 hasRelatedWork W4296081764 @default.
- W3131102893 hasRelatedWork W4308191010 @default.
- W3131102893 hasRelatedWork W4321636153 @default.
- W3131102893 hasRelatedWork W4377964522 @default.
- W3131102893 hasRelatedWork W4381414210 @default.
- W3131102893 hasRelatedWork W4383535405 @default.
- W3131102893 hasRelatedWork W4384345534 @default.
- W3131102893 hasVolume "197" @default.
- W3131102893 isParatext "false" @default.