Matches in SemOpenAlex for { <https://semopenalex.org/work/W3131107316> ?p ?o ?g. }
- W3131107316 endingPage "51" @default.
- W3131107316 startingPage "43" @default.
- W3131107316 abstract "Network representation learning algorithms, which aim at automatically encoding graphs into low-dimensional vector representations with a variety of node similarity definitions, have a wide range of downstream applications. Most existing methods either have low accuracies in downstream tasks or a very limited application field, such as article classification in citation networks. In this paper, we propose a novel network representation method, named Link Prediction based Network Representation (LPNR), which generalizes the latest graph neural network and optimizes a carefully designed objective function that preserves linkage structures. LPNR can not only learn meaningful node representations that achieve competitive accuracy in node centrality measurement and community detection but also achieve high accuracy in the link prediction task. Experiments prove the effectiveness of LPNR on three real-world networks. With the mini-batch and fixed sampling strategy, LPNR can learn the embedding of large graphs in a few hours." @default.
- W3131107316 created "2021-03-01" @default.
- W3131107316 creator A5000711088 @default.
- W3131107316 creator A5017968236 @default.
- W3131107316 creator A5030300071 @default.
- W3131107316 creator A5065286115 @default.
- W3131107316 date "2021-03-01" @default.
- W3131107316 modified "2023-10-16" @default.
- W3131107316 title "Learning Universal Network Representation via Link Prediction by Graph Convolutional Neural Network" @default.
- W3131107316 cites W1495967812 @default.
- W3131107316 cites W1967531152 @default.
- W3131107316 cites W1971106435 @default.
- W3131107316 cites W2007444087 @default.
- W3131107316 cites W2008620264 @default.
- W3131107316 cites W2033709196 @default.
- W3131107316 cites W2040967732 @default.
- W3131107316 cites W2056944867 @default.
- W3131107316 cites W2061570747 @default.
- W3131107316 cites W2072566913 @default.
- W3131107316 cites W2093402979 @default.
- W3131107316 cites W2124689612 @default.
- W3131107316 cites W2131681506 @default.
- W3131107316 cites W2154896031 @default.
- W3131107316 cites W2157082398 @default.
- W3131107316 cites W2167597870 @default.
- W3131107316 cites W2194775991 @default.
- W3131107316 cites W2219466445 @default.
- W3131107316 cites W2393319904 @default.
- W3131107316 cites W2962756421 @default.
- W3131107316 cites W3104097132 @default.
- W3131107316 cites W3105705953 @default.
- W3131107316 cites W4232932184 @default.
- W3131107316 doi "https://doi.org/10.23919/jsc.2021.0001" @default.
- W3131107316 hasPublicationYear "2021" @default.
- W3131107316 type Work @default.
- W3131107316 sameAs 3131107316 @default.
- W3131107316 citedByCount "16" @default.
- W3131107316 countsByYear W31311073162021 @default.
- W3131107316 countsByYear W31311073162022 @default.
- W3131107316 countsByYear W31311073162023 @default.
- W3131107316 crossrefType "journal-article" @default.
- W3131107316 hasAuthorship W3131107316A5000711088 @default.
- W3131107316 hasAuthorship W3131107316A5017968236 @default.
- W3131107316 hasAuthorship W3131107316A5030300071 @default.
- W3131107316 hasAuthorship W3131107316A5065286115 @default.
- W3131107316 hasBestOaLocation W31311073161 @default.
- W3131107316 hasConcept C114614502 @default.
- W3131107316 hasConcept C119857082 @default.
- W3131107316 hasConcept C124101348 @default.
- W3131107316 hasConcept C127413603 @default.
- W3131107316 hasConcept C132525143 @default.
- W3131107316 hasConcept C154945302 @default.
- W3131107316 hasConcept C17744445 @default.
- W3131107316 hasConcept C199539241 @default.
- W3131107316 hasConcept C2776359362 @default.
- W3131107316 hasConcept C2778753846 @default.
- W3131107316 hasConcept C31258907 @default.
- W3131107316 hasConcept C33923547 @default.
- W3131107316 hasConcept C41008148 @default.
- W3131107316 hasConcept C41608201 @default.
- W3131107316 hasConcept C53811970 @default.
- W3131107316 hasConcept C59404180 @default.
- W3131107316 hasConcept C62611344 @default.
- W3131107316 hasConcept C66938386 @default.
- W3131107316 hasConcept C75564084 @default.
- W3131107316 hasConcept C80444323 @default.
- W3131107316 hasConcept C94625758 @default.
- W3131107316 hasConceptScore W3131107316C114614502 @default.
- W3131107316 hasConceptScore W3131107316C119857082 @default.
- W3131107316 hasConceptScore W3131107316C124101348 @default.
- W3131107316 hasConceptScore W3131107316C127413603 @default.
- W3131107316 hasConceptScore W3131107316C132525143 @default.
- W3131107316 hasConceptScore W3131107316C154945302 @default.
- W3131107316 hasConceptScore W3131107316C17744445 @default.
- W3131107316 hasConceptScore W3131107316C199539241 @default.
- W3131107316 hasConceptScore W3131107316C2776359362 @default.
- W3131107316 hasConceptScore W3131107316C2778753846 @default.
- W3131107316 hasConceptScore W3131107316C31258907 @default.
- W3131107316 hasConceptScore W3131107316C33923547 @default.
- W3131107316 hasConceptScore W3131107316C41008148 @default.
- W3131107316 hasConceptScore W3131107316C41608201 @default.
- W3131107316 hasConceptScore W3131107316C53811970 @default.
- W3131107316 hasConceptScore W3131107316C59404180 @default.
- W3131107316 hasConceptScore W3131107316C62611344 @default.
- W3131107316 hasConceptScore W3131107316C66938386 @default.
- W3131107316 hasConceptScore W3131107316C75564084 @default.
- W3131107316 hasConceptScore W3131107316C80444323 @default.
- W3131107316 hasConceptScore W3131107316C94625758 @default.
- W3131107316 hasFunder F4320321001 @default.
- W3131107316 hasFunder F4320335787 @default.
- W3131107316 hasIssue "1" @default.
- W3131107316 hasLocation W31311073161 @default.
- W3131107316 hasOpenAccess W3131107316 @default.
- W3131107316 hasPrimaryLocation W31311073161 @default.
- W3131107316 hasRelatedWork W2980233312 @default.
- W3131107316 hasRelatedWork W3035116611 @default.
- W3131107316 hasRelatedWork W3103545790 @default.
- W3131107316 hasRelatedWork W3149439221 @default.